|IDebug manual

2020 by C. Masloch. Usage of the works is permitted provided that this instrument is
retained with the works, so that any entity that uses the works is notified of this instrument.
DISCLAIMER: THE WORKS ARE WITHOUT WARRANTY.

This document has been compiled on 2020-09-14.

Contents

Section 1: Building the debugger

1.1 Components for building
1.2 How to build
1.3 Build options

Section 2: Parameter Reference

2.1 Number
2.2 Address
2.3 Range

2.4 List

2.5 List or range
2.6 Keyword
2.7 Index

2.8 Segment
2.9 Breakpoint
2.10 Label
2.11 Port

2.12 Drive

2.13 Sector
2.14 Condition
2.15 Register
2.16 Command

Section 3: Command Reference

3.1 Empty command - Autorepeat

3.2 ? command

3.3 : prefix - GOTO label

10
12
12
12
12
13
13
13
13
13
13
13
13
13
14
14
14
14
15
15
16
16

3.4 A command - Assemble

3.5 B commands - Permanent breakpoints
3.5.1 BP command - Set breakpoint
3.5.2 BN command - Set breakpoint number
3.5.3 BC command - Clear breakpoint
3.5.4 BD command - Disable breakpoint
3.5.5 BE command - Enable breakpoint
3.5.6 BT command - Toggle breakpoint
3.5.7 BL command - List breakpoints

3.6 BU command - Break Upwards

3.7 C command - Compare memory

3.8 D command - Dump memory

3.9 DI command - Dump Interrupts

3.10 DM command - Dump MCBs

3.11 DZ/D$/D#/DW# commands - Dump strings

3.12 E command - Enter memory

3.13 F command - Fill memory

3.14 G command - Go

3.15 GOTO command - Control flow branch

3.16 H command - Hexadecimal add/subtract values

3.17 | command - Input from port

3.18 IF command - Control flow conditional

3.19 L command - Load Program

3.20 L command - Load Sectors

3.21 M command - Move memory

3.22 M command - Set Machine mode

3.23 N command - Set program Name

3.24 O command - Output to port

3.25 P command - Proceed

3.26 Q command - Quit

17
17
18
18
18
18
18
19
19
19
20
20
20
20
20
21
21
21
21
22
22
22
22
22
22
22
22
22
23
23

3.27 R command - Display and set Register values
3.27.1 RE command - Register dump Extended
3.27.2 RE buffer commands

3.28 RM command - Display MMX Registers

3.29 RN command - Display FPU Registers

3.30 RX command - Toggle 386 Register Extensions display

3.31 S command - Search memory

3.32 T command - Trace
3.32.1 TP command - Trace/Proceed past string ops

3.33 TM command - Show or set Trace Mode

3.34 TSR command - Enter TSR mode

3.35 U command - Disassemble

3.36 W command - Write Program

3.37 W command - Write Sectors

3.38 X commands - Expanded Memory (EMS) commands

3.39 Y command - Run script file

Section 4: Variable Reference

4.1 Registers

4.2 Options
4.2.1 DCO - Debugger Common Options
4.2.2 DCS - Debugger Common Startup options
4.2.3 DIF - Debugger Internal Flags
4.2.4 DAO - Debugger Assembly Options
4.2.5 DAS - Debugger Assembly Startup options
4.2.6 DPI - Debugger Parent Interrupt 22h
4.2.7 DPR - Debugger PRocess
4.2.8 DPP - Debugger Parent Process
4.2.9 DPS - Debugger Process Selector

4.3 Default step counts

4.4 Limits

23
24
24
24
24
24
24
24
24
25
25
25
25
25
25
25
26
26
26
26
26
26
26
26
26
26
26
26
27
27

4.4.1 RELIMIT - RE buffer execution command limit
4.4.2 RECOUNT - RE bhuffer execution command count

4.5 Return Codes
4.5.1 RC - Return Code
4.5.2 ERC - Error Return Code
4.6 Addresses
4.6.1 A address (AAS:AAO)
4.6.2 D address (ADS:ADO)

4.6.3 Address behind R disassembly (ABS:ABO)

4.6.4 U address (AUS:AUO)
4.6.5 E address (AES:AEQO)
4.6.6 DZ address (AZS:AZO)
4.6.7 D$ address (ACS:ACO)
4.6.8 D# address (APS:APO)
4.6.9 DW# address (AWS:AWO)
4.6.10 DX address (AXO)
4.7 Serial configuration
4.7.1 DSR - Debugger Serial Rows
4.7.2 DST - Debugger Serial Timeout
4.7.3 DSF - Debugger Serial FIFO size
4.8 DEBUGL1 variables
4.8.1 TRx - Test Readmem variables
4.8.2 TWx - Test Writemem variables
4.8.3 TLx - Test getLinear variables
4.8.4 TSx - Test getSegmented variables
4.9 DEBUG3 variables
4.9.1 MTO - Mask Test 0
4.9.2 MT1 - Mask Test 1
4.10 Y command variables

4.10.1 YSF - Y Script Flags

27
27
27
27
27
27
27
27
28
28
28
28
28
28
28
28
28
28
28
28
28
29
29
29
29
30
30
30
30
30

4.11 V variables - Variables with user-defined purpose

4.12 PSP variables
4.12.1 PSP - Process Segment Prefix
4.12.2 PPR - Process PaRent
4.12.3 PPI - Process Parent Interrupt 22h

Section 5: Online help pages

5.1 ? - Main online help

5.2 ?R - Registers

5.3 ?F - Flags

5.4 ?C - Conditionals

5.5 ?E - Expressions

5.6 ?V - Variables

5.7 ?RE - R Extended

5.8 ?RUN - Run keywords

5.9 ?0 - Options

5.10 ?BOOQT - Boot loading

5.11 ?BUILD - IDebug build (only revisions)
5.12 ?B - IDebug build (with options)

5.13 ?SOURCE - IDebug source reference
5.14 ?L - IDebug license

Section 6: Additional usage conditions

6.1 BriefLZ depacker usage conditions

6.2 LZ4 depacker usage conditions

6.3 Snappy depacker usage conditions

6.4 Exomizer depacker usage conditions

6.5 X compressor depacker usage conditions
6.6 Heatshrink depacker usage conditions
6.7 Lzd usage conditions

6.8 LZO depacker usage conditions

Source Control Revision ID

30
30
30
30
30
31
31
32
32
33
33
35
35
36
36
37
39
40
40
40
41
41
41
41
42
42
43
43
43
44

1.1

Section 1: Building the debugger

Building IDebug is not supported on conventional DOS-like systems. (DJGPP environments
may suffice but are not tested.)

Components for building

The following components are required to build with the provided scripts:

bash - to run mak* scripts

perl - to patch binaries (overwrite unused revision 1Ds)

grep - to detect whether boot loading is in use, and to export variables
sed - to filter dosemu2 output

hg (Mercurial) - to retrieve revision IDs

python - to run hg

C compiler - to compile supporting programs

dosemu?2 - to run build decompression tests (optional)

nasm - to assemble. NASM versions to choose:

* NASM versions up to 2.07 fail -%deftok ’is not supported

NASM versions prior to 2.09.02 fail -%deftok ' is implemented wrongly
* NASM version 2.09.02 works (last tested 2019-11)

¢ NASM versions 2.09.03 to 2.09.10 all fail 96assign %$foo%l[bar] quux '
doesn't function right

* NASM version 2.10.09 works (last tested 2019-11)
* NASM version 2.14 likely works (untested)

* NASM version pre 2.15 (from git) works, may need fix in commit ab190debab427,
refer to github.com/ecm-pushbx/nasm (tested as main current choice)

halibut - to build this manual
supporting programs:
* mktables (included in debugger source)

» tellsize (included in separate repo called tellsize)

7

https://github.com/ecm-pushbx/nasm

e crcl6-t/iniload/checksum (included in separate repo called crcl6-t, to add
checksumming, optional)

* a86-DOS kernel and shell (to run build decompression tests, optional)
» additional sources (must be referenced in cfg.sh or ovr.sh):

* Imacros (macro collection)

» scanptab (partition table scanning for bootable debugger)

» Idosboot (iniload frame for bootable debugger)

* inicomp (if to use compression support), also needs one of:
* Drieflz (blzpack)
* 124 (1z4c)
* snappy (snzip)
* exomizer -- recommended as this usually results in the smallest files
e X-compressor
» heatshrink
* lzip -- usually even smaller than Exomizer but takes longer to decompress
e lzop

» crcl6-t/iniload (if to add checksumming)

» symsnip (only for symbolic branch)

1.2 How to build

1. Clone the mercurial repo from https://hg.ulukai.org/ecm/ldebug or in an existing repo use
‘hg pull ’to update the repo

2. Update the repo to either the default branch with ‘up default '’ or the symbolic
branch with hg up symbolic '’ or any other available commit you want to build

3. Clone the other needed repos from https://hg.ulukai.org/ecm/ or in existing repos use
‘hg fetch ’orthe sequence ohig pull ’then‘hg up’to update the repos. (Usually
the additional source repos do not have multiple branches.)

4. Copy the Idebug/source/cfg.sh file to ovr.sh in the same directory
5. Edit ovr.sh to point to the repos

6. EditINICOMP_METHOIN ovr.sh to select none, one, or several compression methods.
Surround multiple values with quotes and delimit with blanks. If the value "none" is used no
compression will occur. If several values are given the smallest of the resulting files will be
used as thielebug.com result. This favours LZMA-Izip (Izd) and Exomizer 3 (exodecr)
compression as they result in the best ratios. The uncomprieldmayu.com file will
always be generated, you can rename or copy or symlink it to usédebsg.com if

8

https://hg.ulukai.org/ecm/ldebug
https://hg.ulukai.org/ecm/

you want.

7. If you have dosemu2, you may enable tiee build_decomp_test option. This
insures that the compressed executables will actually succeed in decompression when
entered in EXE mode, and will lower the required minimum allocation given in the EXE
header to the minimally required value so that decompression will still succeed.

8. Theuse_build_revision_id option is by default on. It requires that the sources are
in hg (Mercurial) repos and that the hg command is available taxginid . The resulting
revision IDs are embedded into the executable and will be shown for the ?B (long) and
?BUILD (short) commands.

9. Inovr.shyou can also specify which tools to use. For example, the vaidBi§ Mspecifies
the nasm executable to use, with path if needed.

10. If you want to rebuild debugtbl.inc you should compile mktables then run it. While in the
Idebug/source directory, runmakec ’ (or use whatever C compiler to build mktables)
then ‘/mktables ' next.

11. Finally, run /mak.sh ’ from the Idebug/source directory. You may pass environment
variables to it, such asNICOMP_METHOD=exodecr ./mak.sh ’to select Exomizer
compression. You may also pass it parameters which will be passed to the main assembly
command, such ag’mak.sh -D_DEBUG4 ' to enable debugging messages.

The mak.sh script expects that the current working directory is equal to the directory that it
resides in. So you'll always want to run it agriak.sh * from that directory. The same is true
of the make* scripts.

The make* scripts work as follows:
make

calls mak.sh to create debug and debugx
maked

calls mak.sh to create ddebug and ddebugx
maker

calls mak.sh to create only debug
makerd

calls mak.sh to create only ddebug
makex

calls mak.sh to create only debugx
makexd

calls mak.sh to create only ddebugx

Idebug/tmp, Idebug/Ist, and Idebug/bin will receive the files created by the mak script. The
following filenames are for the default when running mak.sh on its own which is to create
debug. (When ddebug, debugx, or ddebugx are created, the names change accordingly.) In the

9

Idebug/bin subdirectorgdebug.com will be anonbootable executable (even if ti2ROOTLDR

option is enabled). This executable can safely be compressed using EXE packers such as
the UPX. If the_BOOTLDRoption is enableddebug.com will be a compressed bootable
executable (if any compression method is selected), whddedmigu.com will be an
uncompressed bootable executable. These bootable executables must not be compressed using
any other programs. Doing that would render the kernel mode entrypoints unusable. Incidentally,
UPXrejects these files because their ‘last page size’ MZ EXE header field holds an invalid value.

The bootable executables can be used as MS-DOS 6 pré@&Y'S , MS-DOS 7/80.SYS ,
PC-DOS 6/71BMBIO.COM, FreeDOSKERNEL.SYS RxDOS.3 RXDOS.COMor as a
Multiboot specification or Multiboot2 specification kernel. In any kernel load protocol case, the
root FS that is being loaded from should be a valid FAT12, FAT16, or FAT32 file system on an
unpartitioned (super)floppy diskette (unit number up to 127) or MBR-partitioned hard disk (unit
number above 127). In addition, the bootable executables also are valid 86-DOS application
programs that can be loaded in EXE mode. (Internally, all the .com files are MZ executables
with a header, but they are named with a .COM file name extension for compatibility.)

It is valid to append additional data, such as a .ZIP archive, to any of the executables. However,
if too large this may render loading with the FreeDOS load protocol impossible. All the other
protocols work even in the presence of arbitrarily large appended data.

1.3 Build options
_DEBUG

Make the program debuggable. A ‘D’ is usually prepended to the program name. This
means that the program's handlers are only installed within the function run, and are
uninstalled within the function intrtn1_code. This allows debugging everything except this
section. This is intended to be used with a default build of IDebug as the outer debugger.
However, there is nothing preventing usage of a different debugger. To indicate that the
debuggable debugger is running, its default command prompts are prepended by a tilde

(To debug everything including the section from run to intrtn1_code, or the DPMI entry
of IDebugX, a lower-level debugger must be used, such as dosemu's dosdebug or other
debuggers that are integrated into emulators.)

_PM

Make the program DPMI-capable. An ‘X’ is usually appended to the program name.

If possible, the interrupt 2Fh function 1687h is hooked and made to return IDebugX's
entrypoint. Otherwise, the initial entry into protected mode must be traced. Upon entry
IDebugX will install itself as if it is the actual client, initialise itself, then set up the original
client as if that had entered protected mode. The assembler and disassembler will detect
and support 32-bit code segments. Other commands will also use 32-bit addressing to
allow using 32-bit segments. To indicate that the debugger is in protected mode, its default
command prompt changes from the dashtb a hash sign#’. (IDDebugX prepends its

tilde to that resulting in~#.)

_BOOTLDR

Makes the program support being bootloaded. This additionally requires the IDOS iniload
stage wrapped around the MZ .EXE image of the debugger. The mak.sh script prepends

10

an ‘I to the base filename to create the names for the bootable files. For building debug,
this results indebugu.com andldebug.com . In bootloaded mode, I/O is never done
using DOS, as if INDOS mode was always on. The DOS's current PSP is not switched
during debugger operation. The MCB chain can only be displayed using the DM command
by specifying the start segment explicitly. The BOOT commands are supported, refer to
section 5.10.

11

2.1

2.2

2.3

Section 2: Parameter Reference

Number

Plain numbers are evaluated as expressions. Expressions consist of any number of the following:
* Unary operators
* Binary operators
* Operands

Plain number parsing for an expression continues for as long as a valid expression is continued.
For example, in the comman®‘ 100 + 20 L 10’ the starting address (its offset to be
specific) is calculated as ‘100 + 20’. Then the expression evaluator encountdry thieich is

not a valid binary operator. Plain number expression parameters are used by a lot of commands.
Sometimes, the plain number parameter type is called ‘count’ or ‘value’.

Address

An address parameter is calculated with a default segment. First, a plain number is parsed. If it
is followed by a colon, the first number is taken as segment, and then another number is parsed
for the offset. Otherwise, the first number is used as the offset. Offsets may be 16 bits or 32 bits
wide, though 32-bit offsets are only valid for DebugX and only in 32-bit segments. Address
parameters are used by a lot of commands.

Range

A range parameter may have a default length, or it may be disallowed to omit a length. Parsing
a range starts with parsing an address. Then, if the end of the line is not yet reached, an end for
the range may be specified. The end may be a plain number, which is taken as the offset of the
last byte to include in the range. The address of the last byte to include must be equal or above
the address of the first byte that is included in the range.

The end may instead be specified with Bhor * LENGTHkeyword. In that case, the keyword

is followed by a plain number and an optional item size keyword. A length of zero is not valid.
The item size keyword may b&YTES, * WORDSor DWORDS-or the latter two, the plain
number will be multiplied by 2 or 4. TheBYTES keyword is only provided for symmetry;
currently all commands taking ranges default to byte size fortB&IGTHnumber.

Forexample,the commanDD 100 LENGTH 4 DWORDM&I dump memory from address
0100h (in the current data segment) in dword units, for a length of 4*4 = 16 bytes. The item size
keywords were introduced primarily for thBWand ‘DD commands (refer to section 3.8), but
they can be used for any command that accepts a range.

Range parameters are used by a lot of commands.

12

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

List

A list is made up of a sequence of items. Each item is either a plain number or a quoted string.
List parsing continues until the end of the line. Each plain number represents a single byte.
Quoted strings represent as many bytes as there are quoted. List parameters are used by the E,
F, and S commands. Refer to section 3.12, section 3.13, and section 3.31.

List or range

A list or range can be specified for this parameter. The range is identified by a leBANGSE
keyword. Otherwise, a list is parsed. A list or range parameter is as yet used by the S command,
refer to section 3.31.

Keyword

A keyword is checked insensitive to capitalisation. Keywords depend on each command. Only
the keywords used to specify a range's length are shared by all commands that parse ranges.

Index

An index is a plain number that specifies a breakpoint index. It allows operating on one specific
breakpoint. The index parameter type is used by the B commands, refer to section 3.5.

Segment

A segment is a plain number for parsing purposes. The segment parameter type is used by the
DM command and some BOOT commands, refer to section 3.10 and section 5.10.

Breakpoint

Each breakpointis a single address, which defaults to the code segment. The address may instead
be specified starting with an AT sigi@, followed by a blank or an opening parenthesis. In

that case, the following plain number specifies the non-segmented linear address to use. The
breakpoint parameter type is used by the B and G commands, refer to section 3.5 and section
3.14.

Label

A labelis a (not quoted) string keyword. It may start with an optional colon. A label can be used
by the GOTO and Y commands, refer to section 3.15 and section 3.39.

Port

A port is a plain number for parsing purposes. The port parameter type is used by the | and O
commands, refer to section 3.17 and section 3.24.

Drive

A drive may be either an alphabetic letter followed by a colon, or a plain number. The number
zero corresponds to drive A: then. The drive parameter type is used by the L and W sector
commands, refer to section 3.20 and section 3.37. The N and Y commands (section 3.23 and
section 3.39) also accept drive parameters, but only as part of their filenames. These must be in
the drive letter followed by colon format.

13

2.13

2.14

2.15

2.16

Sector

A sector is a plain number, which can be equal to any 32-bit value. The sector parameter type
is used by the L and W sector commands, refer to section 3.20 and section 3.37. Some BOOT
commands also use sector numbers, refer to section 5.10.

Condition

A condition is a plain number. It is evaluated either to nonzero (true) or zero (false). The
condition parameter type is used by the IF command, as well as the P, TP, and T commands
when specified with aNVHILE keyword. Refer to section 3.18, section 3.25, and section 3.32.

Register

A register specifies an internal variable of the debugger. Most prominently these include the
debuggee's registers as stored by the debugger in its data segment. A register or variable may be
an operand in a plain number's expression. However, several forms of the R command also use
register parameters. These allow reading and writing the register values. Refer to section 3.27.

Command

Command is a special parameter type that is used only by the RE.APPEND and RE.REPLACE
commands (section 3.27.2). It is read verbatim and entered into the RE command buffer.
Semicolons within a command parameter are not parsed as end of line comment markers.
Instead, they are converted to CR (13) codes in the RE buffer. This delimits the parts of the
parameter into several commands. A semicolon may be prefixed by a backslash to escape it and
thus enter a literal semicolon into the RE buffer.

14

3.1

Section 3: Command Reference

Empty command - Autorepeat

Entering an empty command at an interactive prompt results in autorepeat. Interactive prompts
for this purpose include:

» the debugger as a DOS applicatiam (21h)
» the debugger in INDOS mode or as a bootloaded progimatml6h /int 10h)
» the debugger across a serial port (port 1/0O)
Input that does not count as an interactive prompt includes:
» reading from a file redirected as stdin using D@8 (21h)
» reading from a Y script file using DO¢ 21h)
» reading from a Y script file while bootloadeoh{ 13h)
» reading from the command line buffer
» reading from the RE buffer
Autorepeat is not supported by all commands. The following commands support autorepeat:
D/DB/DW/DD

Continues memory dump behind the last prior dumped position. Continues with the same
size as the prior dump. As for if the command is executed with an address lacking a length,
the default length (128 bytes) is used.

DZ/D$/D#/DW#

Continues string dump behind the last prior dumped string. Continues with the same type
of string as the prior dump.

DX

Continues memory dump.

Repeats a step running the debuggee. An equals address given to the prior Go command is
not used again. The same G breakpoints as used by the prior Go command are used (same
as G AGAIN). The exception is that wherever a breakpoint matcheS$hWE)IP at the

start of the command's execution, it is skipped once.

15

3.2

3.3

Repeats a step running the debuggee. An equals address given to the prior Proceed
command is not used again. A count given to the prior Proceed command is not used again,

autorepeat always runs as if not given a count. (That means the PPC variable is used as the
effective count. Refer to section 4.3.)

Repeats a step running the debuggee. An equals address given to the prior Trace command
is not used again. A count given to the prior Trace command is not used again, autorepeat
always runs as if not given a count. (That means the TTC variable is used as the effective
count. Refer to section 4.3.)

TP

Repeats a step running the debuggee. An equals address given to the prior Trace/Proceed
command is not used again. A count given to the prior Trace/Proceed command is not used
again, autorepeat always runs as if not given a count. (That means the TPC variable is used
as the effective count. Refer to section 4.3.)

Repeats disassembly behind the last prior disassembled instruction. As for if the command
is executed with an address lacking a length, the default length (32 bytes) is used.

? command
Online help ?
The question mark command (?) lists the main online help screen.

There are additional help topics that can be listed by using the question mark command with an
additional letter or keyword. These keywords are as follows:

Registers ?R
Flags ?F
Conditionals ?C
Expressions ?E
Variables ?V

R Extended 7?RE
Run keywords ?RUN
Options ?0
Boot loading ?BOOT
IDebug build ?BUILD
IDebug build ?B
IDebug license ?L

The full help pages are listed in section 5.

. prefix - GOTO label

A leading colon indicates a destination label for GOTO, see section 3.15.

16

3.4

3.5

A command - Assemble
assemble A [address]

Starts assembly at the indicated address (which defaults to CS segment), or if no address is
specified, at the "a_addr" (AAS:AAQO variables).

Assembly mode has its own prompt. Entering a single dot (.) or an empty line terminates
assembly mode. Comments can be given with a prefixed semicolon. In assembly mode,
whereever an immediate number occurs an expression can be given surrounded by parentheses
(‘and). In such expressions, register names like AX are evaluated to the values held by the
registers at assembly time. To refer to a register as an assembly operand, it must occur outside
parentheses.

B commands - Permanent breakpoints

There are a fixed number of permanent breakpoints provided by the debugger. The default is
to provide 16 permanent breakpoints. They are specified by indices ranging from 00 to OF. A
breakpoint can be unused, used while enabled, or used while disabled. A breakpoint that is in
use has a specific linear address. It is allowed, though not advised, for several breakpoints to be
set to the same address.

When running the debuggee with the commands G, T, TP, or P, hitting a permanent breakpoint
stops execution, and indicates in a message "Hit permanent breakpoint XX" where XX is
replaced by the hexadecimal byte index of the breakpoint. If the breakpoint counter is not equal
to 8000h when the breakpoint is hit, then the "Hit" message is followed by a "counter=YYYY"
indicator. After that message a register dump occurs, same as for default breaking for the Run
commands.

The exceptions are as follows:

» If the CS:(E)IP at the first step of a G command matches any breakpoints, then G does
a TP-like step with all breakpoints other than the "cseip”-breakpoint written, while the
"cseip"-breakpointis not written. After that, the "cseip"-breakpointis written and execution
resumes as normal for G.

» If T.NB or TP.NB or P.NB is used, no permanent breakpoints are written at all.

 If T.SB or TP.SB or P.SB is used, then during the first step no permanent breakpoints
are written. If a counter higher than 1 is given, then during subsequent steps permanent
breakpoints are written.

Each breakpoint has a breakpoint counter, which defaults to 8000h if not set explicitly by the
BP or BN commands. The breakpoint counter behaves as follows:

» If (counter & 3FFFh) equals zero then the counter is considered to be at a terminal state.

» If the point breaks while the counter is not at a terminal state, then the counter is
decremented.

» If the counter is decremented to 0 or 4000h, then the point is hit.
» If the counter is decremented to 8000h or CO00h, or was already at either count without
being decremented, then the point is hit.

17

3.5.1

3.5.2

3.5.3

3.5.4

3.5.5

» If the point is not hit but the bit (counter & 4000h) is set, then the point is passed.

The point being passed means that during running the debuggee with a Run command, execution
is not stopped, but a message indicating "Passed permanent breakpoint XX, counter=YYYY"
is displayed. After that message, a register dump occurs. Then execution is continued in
accordance with the command that is running debuggee code.

BP command - Set breakpoint
set breakpoint B[P] index|AT|INEW address [number]

BP (or B) initialises the breakpoint with the given index. It must be a yet unused breakpoint. If
the index is specified as the keyword NEW, the lowest unused breakpoint (if any) is selected.
If there is the keyword AT instead of an index or a keyword NEW, then an existing breakpoint
at the same linear address is reset, or a new one is added (same as if given the NEW keyword).

The address can be given in a segmented format, which defaults to CS, and which in DebugX is
subject to either PM or 86M segmentation semantics depending on which mode the debugger
is in. The address can also be given with an @ specifier (followed by an opening parenthesis
or whitespace) in which case it is specified as the 32-bit linear address. Debug without DPMI
support limits breakpoints to 24-bit addresses, of which 21 are usable.

The optional number, which defaults to 8000h, sets the breakpoint counter to that number.

BN command - Set breakpoint number
set number BN index|AT address|ALL number

BN sets the breakpoint counter of the specified breakpoint with the given index, or all used
breakpoints when given the keyword ALL, or the first breakpoint with a matching linear address
when given the AT keyword. The number defaults to 8000h.

BC command - Clear breakpoint
clear BC index|AT address|ALL

BC clears the specified breakpoint with the given index, or all breakpoints when given the
keyword ALL, or the first breakpoint with a matching linear address when given the AT keyword.
This returns the specified breakpoint (or all of them) to the unused state.

BD command - Disable breakpoint
disable BD index|AT address|ALL

Given an index or the keyword ALL or the keyword AT (like BC), BD disables breakpoints that
are in use. A disabled breakpoint's address is retained and BP will not allow initialising it anew
(except with AT), but it is otherwise skipped in breakpoint handling.

BE command - Enable breakpoint
enable BE index|AT address|ALL

Like BD, but enables breakpoints.

18

3.5.6

3.5.7

3.6

BT command - Toggle breakpoint
toggle BT index|AT address|ALL

Like BE and BD, but toggles breakpoints: A disabled breakpoint is enabled, while an enabled
breakpoint is disabled.

BL command - List breakpoints
list BL [index|AT address|ALL]

BL lists a specific breakpoint given by its index, or all used breakpoints if given the keyword
ALL or given neither an index nor the keyword. When given the AT keyword, all breakpoints

with a matching linear address are listed. (This differs from all other B commands, which only
select the first matching breakpoint when the AT keyword is given.)

When listing all breakpoints, two breakpoints are displayed per line, and only lines with used
breakpoints are displayed.

The output format for unused breakpoints is as follows:
. "BP"
* The byte index given as two hexadecimal digits
e "Unused"
The output format for used breakpoints is as follows:
- "BP"
* The byte index given as two hexadecimal digits
* A plus sign if the breakpoint is enabled, a minus sign if it is disabled.
» "Lin="followed by the linear address of this breakpoint.
» The breakpoint content byte given in parentheses (generally "CC").

» "Counter=" followed by the breakpoint counter.

BU command - Break Upwards
break upwards BU

This command, which is only supported by Debuggable IDebug builds (DDebug), causes the
debugger to execute an int3 instruction in its own code segment. This breaks to the next debugger
that was installed prior to DDebug. Prior to the breakpoint, the message "Breaking to next
instance.” is displayed.

In non-debuggable IDebug builds, the following error message is displayed instead:

-bu
Already in topmost instance. (This is no debugging build of IDebug.)

19

3.7

3.8

3.9

3.10

3.11

C command - Compare memory
compare C range address

Given a range, the address of which defaults to DS, and another address that also defaults to
DS, this command compares strings of bytes, and lists the bytes that differ.

D command - Dump memory

dump D [range]
dump bytes DB [range]
dump words DW [range]
dump dwords DD [range]

Given a range, the address of which defaults to DS, this command dumps memory in
hexadecimal and as ASCII characters. If the DCO option 4 is set, characters with the high bit
set (80h to FFh) are displayed as-is in the character dump. Otherwise, they will be treated like
control characters, which means replaced by dots.

If no range is specified, the D command continues dumping at "d_addr" (ADS:ADO), which is
updated by each D command to point after the last shown byte.

The default is for D to dump bytes. After a DW or DD command, the autorepeat and plain D
(without a range) default to the last-used size. If the default range should be used but the size
should be reset to bytes, the DB command can be used. The D command with a range always
acts the same as DB.

DI command - Dump Interrupts
dump interrupts DI interrupt [count]

The DI command dumps interrupt vectors from the IVT (86M) or IDT (PM). In PM, for the
vectors 00h to 1Fh, the exception handlers are also dumped.

DM command - Dump MCBs
dump MCB chain DM [segment]

The DM command dumps an MCB chain. If not given a start MCB segment, and the debugger is
running as an 86-DOS application, the start of DOS's MCB chain is used. If given a start MCB

segment, this is used as the starting MCB. (Note: In current RxDOS builds, the start MCB is

always at segment 60h.)

The DM command initially lists the debuggee's PSP. This is only valid when the debugger is
running as an 86-DOS application.

The MCB chain dump is continued until an MCB is encountered that has neither an M nor a Z
signature letter, or the MCB address wraps around the 1 MiB boundary. In particular, this means
that a disabled UMB link MCB (usually pointing to the MCB at segment OFFFh if there is no
EBDA nor any pre-boot-loaded programs) will not end the dump.

DZ/D$/D#/DW# commands - Dump strings
display strings DZ/D$/D[W]# [address]

20

The D string commands each dump a string at a specified address, which defaults to DS as the
segment.

» DZ displays an ASCIZ string, terminated by a byte with the value O.
« D$ displays a CP/M-style string, terminated by a dollar sign character $.
» D# displays a Pascal-style string with a length count in the first byte.

» DW# displays a string with a length count in the first word.

3.12 E command - Enter memory

enter E address [list]

3.13 F command - Fill memory

fill F range list
3.14 G command - Go
go G [=address] [breakpts]

The G command runs the debuggee. It can be given a start address (the segment of which defaults
to CS), prefixed by an equals sign, in which case CS:EIP is set to that start address upon running.
Note that if there is an error parsing the command line, CS:EIP is not changed. Further, if a
breakpoint fails to be written initially, CS:EIP also is not changed.

The G command allows specifying breakpoints, which are either segmented addresses (86M or
PM addresses depending on DebugX's mode) or linear addresses prefixed by an"@ " or "@(",
similar to how the BP command allows a breakpoint specification. G breakpoints are identified
by their position in the command line, as the 1st, 2nd, 3rd, etc. By default, 16 G breakpoints are
supported.

The G LIST command lists the breakpoints given to the last (successfully parsed) G command.

The G AGAIN command re-uses the breakpoints given to the last (successfully parsed) G
command. It also allows an equals-sign-prefixed start address like the plain G command, in front
of the AGAIN keyword. After the AGAIN keyword, additional breakpoints may be specified.

If the command repetition of G is used, it is handled as if "G AGAIN" was entered, that is it re-
uses the same breakpoints as those given to the prior G command.

A G command that fails to parse will not modify the stored G breakpoint list. If an error occurs
during writing breakpoints, the list will have been modified already however.

The"content" byte in G LIST is usually CCh (the int3 instruction opcode), but retains its original
value if a failure occurs during breakpoint byte restoration.

3.15 GOTO command - Control flow branch
goto GOTO :label

The GOTO command can only be used when executing from a script file, the command line
buffer, or the RE buffer. It lets execution continue at a different point in the file or buffer. Labels

21

3.16

3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24

are identified by lines that start with a colon, followed by the alphanumeric label name, and
optionally followed by a trailing colon. The destination label of the GOTO command may be
specified with or without the leading colon.

There are several special cases:

» Ifthe destination label is :SOF (Start Of File) then the file or buffer completely rewinds to
its start.

» If the destination label is :EOF (End Of File) then the file or buffer is closed.

» If the destination label is not found then the file or buffer is closed, along with an error
message.

H command - Hexadecimal add/subtract values

hex add/sub H valuel value2

| command - Input from port

input [[W|D] port
IF command - Control flow conditional
if IF (cond) THEN cmd

The IF command allows specifying a conditionally executed command. The condition is a
numeric expression. If it evaluates to non-zero then the conditional command is executed. This
is especially useful for creating conditional control flow branches with the GOTO command
(see section 3.15).

L command - Load Program

load program L [address]

L command - Load Sectors

load sectors L address drive sector count

M command - Move memory

move M range address

M command - Set Machine mode
80x86/x87 mode M [0..6|C|NC|C2|?]

N command - Set program Name

set name N [[drive:][path]progname.ext [parameters]]

O command - Output to port
output O[W/|D] port value

22

3.25

3.26

3.27

P command - Proceed
proceed P [=address] [count [WHILE cond] [SILENT [count]]]

The P command causes debuggee to run a proceed step. This is the same as tracing (T command)
for most instructions, but behaves differently for "call”", "loop", and repeated string instructions.
For these, a proceed breakpoint is written behind the instruction (similarly to how the G

command writes breakpoints), and the debuggee is run without the Trace Flag set.

Like for the G command, a start address can be given to P prefixed by an equals sign. Next,
a count may be specified, which causes the command to execute as many P steps as the count
indicates.

After a count, a WHILE keyword may be specified, which must be followed by a conditional
expression. Execution will only continue if the WHILE expression evaluates to true.

After a count (when no WHILE is given) or after a WHILE condition, a SILENT keyword
and optional count may be given. In this case, the debugger buffers the register dump and
disassembly output of the executed steps, until control returns to the debugger command line.
Then, the last dumps stored in the buffer are displayed. If a non-zero count s given, at most that
many register dumps are displayed.

Q command - Quit

quit Q

R command - Display and set Register values
register R [register [value]]

The R command without any register specified dumps the current registers, either displayed as
16-bit or 32-bit values (depending on the RX option), and disassembles the instruction at the
current CS:(E)IP location.

R with a register, named debugger variable, or memory variable (of the form
BYTE/WORD/DWORD [segment:offset]) displays the current value of the specified variable.
It then displays a prompt, allowing the user to enter a new value for that variable. Entering a dot
(.) or an empty line returns to the default debugger command line.

R with a variable, followed by a dot (.), only displays the current value of that variable.

R with a variable, followed by an optional equals sign, and followed by an expression, evaluates
the expression and assigns its resulting value to the variable. The equals sign may instead be a
binary operator with a trailing equals sign, which is handled as an assignment operator.

Examples:

-r ax.
AX 0000

-r ax

AX 0000 :1
-r ax

AX 0001 :.
-rax +=4

23

-r ax
AX 0005 :

-r word [cs:0]

WORD [1867:0000] 20CD :
-r dif .

DIF 0100B00OB

3.27.1 RE command - Register dump Extended
R extended RE
The RE command runs the RE buffer commands. Refer to section 5.7.
3.27.2 RE buffer commands
RE commands RE.LIST|APPEND|REPLACE [commands]
RE.LIST lists the RE buffer contents in a way that can be re-used as input to RE.REPLACE.
RE.APPEND appends the following commands to the RE buffer.
RE.REPLACE replaces the RE buffer with the following commands.
The RE buffer usage is described in the ?RE help page (section 5.7).

3.28 RM command - Display MMX Registers
MMX register RM

3.29 RN command - Display FPU Registers
FPU register RN

3.30 RX command - Toggle 386 Register Extensions display
toggle 386 regs RX

3.31 S command - Search memory

search S range list

3.32 T command - Trace
trace T [Faddress] [count [WHILE cond] [SILENT [count]]]

The T command is similar to the P command. However, T traces most instructions. Depending
on the TM option, interrupt instructions are also traced (into the interrupt handler) or proceeded
past.

3.32.1 TP command - Trace/Proceed past string ops
trace (exc str) TP [=address] [count [WHILE cond] [SILENT [count]]]

The TP command is alike the T command, but proceeds past repeated string instructions like
the P command would.

24

3.33

3.34

3.35

3.36

3.37

3.38

3.39

TM command - Show or set Trace Mode
trace mode TM [0]1]

TSR command - Enter TSR mode
enter TSR mode TSR

U command - Disassemble

unassemble U [range]

W command - Write Program

write program W [address]

W command - Write Sectors

write sectors W address drive sector count

X commands - Expanded Memory (EMS) commands
expanded mem XA/XD/XM/XR/XS, X? for help

Y command - Run script file
run script Y [partition/][scriptfile] [:label]

The Y command runs a script file. The script file is specified in two different ways, depending
on whether the debugger is running as an 86-DOS application or as a boot-loaded kernel
replacement.

* If running as an application, the script name is a regular pathname. It may be quoted
with doublequotes if the pathname includes blanks. If the indicated drive supports long
filenames (LFNs) then the debugger will first try to open the pathname as an LFN.

» Otherwise, the script name may start with a partition specification to use. (Refer to the
?BOOT help page in section 5.10 for partition specifications.) Then, the pathname relative
to that partition's root directory follows. Long filenames are not supported. Note that it is
not valid to run an empty script file when boot-loaded.

Further, a label may be specified to cause execution to start at that label instead of at the start
of the file. This is equivalent to placing &O0TO :label ' command at the start of the script
file. The colon to indicate a label is required.

If execution already is within a script file, then the Y command may be run with only a label
(again with the colon required). In that case, the current script file is opened in a subsequent
level (handle or boot-loaded script file context) and execution starts at that label.

25

Section 4: Variable Reference

4.1 Regqisters
All debuggee registers can be accessed numerically:
« al,cl,dl,bl,ah,ch,dh,bh
e ax,cx,dx,bx,sp,bp,si,di
e eax,ecx,edx,ebx,esp,ebp,esi,edi
* es,cs,ss,ds,fs,gs
o« fl ,efl ,ip,eip
Each 16-bit register can be used in a register pair, such as:
e dxax
* bxcx (used byl load program antwrite program commands)
e sidi
e csip
4.2 Options
4.2.1 DCO - Debugger Common Options
4.2.2 DCS - Debugger Common Startup options
4.2.3 DIF - Debugger Internal Flags
4.2.4 DAO - Debugger Assembly Options
4.2.5 DAS - Debugger Assembly Startup options
4.2.6 DPI - Debugger Parent Interrupt 22h
4.2.7 DPR - Debugger PRocess
4.2.8 DPP - Debugger Parent Process
4.2.9 DPS - Debugger Process Selector

Owhilein Real or Virtual 8086 Mode, debugger process selector otherwise. (The process selector
addresses DebugX's PSP and DATA ENTRY section.)

26

4.3

4.4
44.1

4.4.2

4.5
45.1

4.5.2

4.6
4.6.1

4.6.2

Default step counts
PPC
Proceed command (section 3.25) default step count
TPC
Trace/Proceed command (section 3.32.1) default step count
TTC
Trace command (section 3.32) default step count

All of these are doublewords and default to 1. For the respective commands, these counts specify
the number of steps to take if none is specified explicitly. This includes when a command is run
by autorepeat, refer to section 3.1. If one of these is set to zero then it is an error to not specify
a count explicitly for the corresponding command.

Limits
RELIMIT - RE buffer execution command limit

Doubleword. Default is 256. If this many commands are executed from the RE buffer, the
execution is aborted and the command that called RE is continued.

RECOUNT - RE buffer execution command count
Doubleword. This is reset to zero when RE buffer execution starts. Each time a command is

executed from the RE buffer, this variable is incremented. If it reaches the value of RELIMIT,
RE buffer execution is aborted.

Return Codes
RC - Return Code

Word. This holds the most recent command's return code. If the most recent command
succeeded, then this is zero.

ERC - Error Return Code
Word. This holds the most recent non-zero return code.
Addresses

A address (AAS:AAQO)

AAS: word, AAO: doubleword. Default address for the assembler. Updated to point after each
assembled instruction.

D address (ADS:ADO)

Default address for memory dumping. Updated to point after each dumped memory content.

27

4.6.3
4.6.4

4.6.5

4.6.6

4.6.7

4.6.8

4.6.9

4.6.10

4.7
4.7.1

4.7.2

4.7.3

4.8

Address behind R disassembly (ABS:ABO)
U address (AUS:AUQ)

Default address for the disassembler.

E address (AES:AEQO)

Default address for memory entry.

DZ address (AZS:AZO)

Default address for DZ command, ASCIZ strings. Terminated by zero byte.

D$ address (ACS:ACO)
Default address for D$ command, CP/M strings. Terminated by dollar $ign °

D# address (APS:APO)

Default address for D# command, Pascal strings. Prefixed by length count byte.

DW# address (AWS:AWO)

Default address for DW# command. Prefixed by length count word.

DX address (AXO)
Default address for DX command. (Only included in DebugX.)

Serial configuration
DSR - Debugger Serial Rows

Byte. Default 24. Sets the number of rows of the terminal connected via serial port. Setting this
to zero disables paging to the serial port.

DST - Debugger Serial Timeout

Byte. Default 15. This gives the number of seconds that the KEEP prompt upon serial connection
waits. Setting this to zero waits at the prompt forever.

DSF - Debugger Serial FIFO size

Byte. Default 16. This gives the size of the 16550A's built-in TX FIFO
to use. Set to 15 if using dosemu before revision gc7f5a828 2019-01-22, see
https://github.com/stsp/dosemu?2/issues/748.

_DEBUGL1 variables

These variables are not supported by default. The build option _DEBUG1 must be enabled to
include them. The Test Counter variables work similarly to permanent breakpoint counters:

* |fthe counter AND-masked with 7FFFh is zero, it is at a terminal state.

» Ifthe counter is not yet at a terminal state, it is decremented.

28

https://github.com/stsp/dosemu2/issues/748

4.8.1

4.8.2

4.8.3

4.8.4

» If the counter is decremented to zero, it triggers.
» If the counter is decremented to 8000h or already at 8000h, it triggers.

The default values for all counters and addresses is zero.

TRXx - Test Readmem variables
If a fault is injected into readmem, it returns the value given in TRV.
TRC - Test Readmem Counter

Word. Each of the TRCO to TRCF counters gives one counter for readmem fault injection
testing.

TRA - Test Readmem Address

Doubleword. Each of the TRAO to TRAF counters gives one linear address for readmem
fault injection testing.

TRV - Test Readmem Value

Byte. Default 0. If areadmem faultis injected, this byte value is returned by the read instead
of the actual memory content.

TWXx - Test Writemem variables
If a fault is injected into writemem, it returns failure (CY).
TWC - Test Writemem Counter

Word. Each of the TWCO to TWCF counters gives one counter for writemem fault injection
testing.

TWA - Test Writemem Address

Doubleword. Each of the TWAOQ to TWAF counters gives one linear address for writemem
fault injection testing.

TLx - Test getLinear variables
If a fault is injected into getlinear, it returns failure (CY).
TLC - Test getLinear Counter

Word. Each of the TLCO to TLCF counters gives one counter for getlinear fault injection
testing.

TLA - Test getLinear Address

Doubleword. Each of the TLAO to TLAF counters gives one linear address for getlinear
fault injection testing.

TSx - Test getSegmented variables

If a fault is injected into getsegmented, it returns failure (CY).

29

4.9

4.9.1

4.9.2

4.10

4.10.1

4.11

4.12
4.12.1
4.12.2
4.12.3

TSC - Test getSegmented Counter

Word. Each of the TSCO to TSCF counters gives one counter for getsegmented fault
injection testing.

TSA - Test getSegmented Address

Doubleword. Each of the TSAO to TSAF counters gives one linear address for
getsegmented fault injection testing.

_DEBUGS3 variables

These variables are not supported by default. The build option _DEBUG3 must be enabled to
include them. These variables are used to test the read-only masking. Read-only masking makes
it so that bits given in the mask are read-only. Bits that are clear in the mask are writable.

MTO - Mask Test O

Doubleword. Default 0. Mask AA55_AA55h.

MT1 - Mask Test 1

Doubleword. Default 0011_0022h. Mask OOFF_0OFFh.

Y command variables

Y command variables can be used when the Y command (as application or bootloaded) has
been used to open a script file. YSx (Y Script) variables are generic and refer to whatever Y file
is opened. YBx (Y Bootloaded script) variables refer to opened Y files while bootloaded. YHx
(Y Handle script) variables refer to opened Y files as application.

YSF - Y Script Flags
Word.

V variables - Variables with user-defined purpose
Doubleword. Default zero. VO to VF or VOO to VFF each specify one variable.

PSP variables

PSP - Process Segment Prefix
PPR - Process PaRent

PPI - Process Parent Interrupt 22h

30

5.1

Section 5: Online help pages

? - Main online help

IDebug (2020-03-25) help screen

assemble A [address]

set breakpoint B[P] index|NEW address [number]
set number BN index|ALL number

clear BC index|ALL

disable BD index|ALL

enable BE index|ALL

toggle BT index|ALL

list BL [index|ALL]
compare C range address
dump D [range]

dump interrupts DI interrupt [count]
dump MCB chain DM [segment]
display strings DZ/D$/D[W]# [address]

enter E address [list]

fill F range list

go G [=address] [breakpts]
goto GOTO :label

hex add/sub H valuel value2
input [[W|D] port

if IF (cond) THEN cmd

load program L [address]
load sectors L address drive sector count

move M range address

80x86/x87 mode M [0..6|C|NC|C2|?]

set name N [[drive:][path]progname.ext [parameters]]

output O[W/|D] port value

proceed P [=address] [count [WHILE cond] [SILENT [count]]]
quit Q

register R [reqister [value]]

R extended RE

RE commands RE.LIST|APPEND|REPLACE [commands]

MMX register RM

FPU register RN

toggle 386 regs RX

search S range list

trace T [=address] [count [WHILE cond] [SILENT [count]]]
trace (exc str) TP [=address] [count [WHILE cond] [SILENT [count]]]
trace mode TM [0]1]

31

enter TSR mode TSR

unassemble U [range]

write program W [address]

write sectors W address drive sector count
expanded mem XA/XD/XM/XR/XS, X? for help
run script Y [partition/][scriptfile] [:label]

Additional help topics:
Registers 7R
Flags ?F
Conditionals ?C
Expressions ?E
Variables ?V

R Extended 7?RE
Run keywords ?RUN
Options ?0

Boot loading ?BOOT
IDebug build ?BUILD
IDebug build ?B
IDebug sources ?SOURCE
IDebug license ?L

?R - Registers

Available 16-bit registers: Available 32-bit registers: (386+)
AX Accumulator EAX

BX Base register EBX

CX Counter ECX

DX Data register EDX

SP Stack pointer ESP

BP Base pointer EBP

Sl Source index ESI

DI Destination index EDI

DS Data segment

ES Extra segment

SS Stack segment

CS Code segment

FS Extra segment 2 (386+)

GS Extra segment 3 (386+)

IP Instruction pointer EIP
FL Flags EFL

Available 64-bit Matrix Math Extension (MMX) registers: (if supported)
MMx MM(x) MMX register x, where xis 0 to 7

Enter ?F to display the recognized flags.

?F - Flags

Recognized flags:

32

5.4

5.5

Value Name Set Clear

0800 OF Overflow Flag OV Overflow NV No overflow
0400 DF Direction Flag DN Down UP Up

0200 IF Interrupt Flag El Enable interrupts DI Disable interrupts
0080 SF Sign Flag NG Negative PL Plus

0040 ZF Zero Flag ZR Zero NZ Not zero

0010 AF Auxiliary Flag AC Auxiliary carry NA No auxiliary carry
0004 PF Parity Flag PE Parity even PO Parity odd

0001 CF Carry Flag CY Carry NC No carry

The short names of the flag states are displayed when dumping registers and can be entered to
modify the symbolic F register with R. The short names of the flags can be modified by R.

?C - Conditionals

In the register dump displayed by the R, T, P and G commands, conditional jumps are displayed
with a notice that shows whether the instruction will cause a jump depending on its condition
and the current register and flag contents. This notice shows either "jumping" or "not jumping"
as appropriate.

The conditional jumps use these conditions: (second column negates)

jo jno OF
jcjbjnae jncjnbjae CF
jz je jnz jne ZF

jbe jna jnbe ja ZF||CF
Is jns SF

jpjpe jnpjpo PF
jljnge jnljge OFMSF
jle jng jnle jg OFMSF || ZF

j(e)cxz (e)ex==

loop (e)ex!=1

loopz loope (e)ex!=1 && ZF
loopnz loopne (e)ex!=1 && 'ZF

Enter ?F to display a description of the flag names.

?E - Expressions

Recognized operators in expressions:

| bitwise OR || boolean OR
N bitwise XOR AN boolean XOR
& bitwise AND && boolean AND

>> bit-shift right > test if above
>>> signed bit-shift right < test if below

<< bit-shift left >= testif above-or-equal
>< bit-mirror <= test if below-or-equal
+ addition == testif equal

- subtraction I= testif not equal

* multiplication => same as >=

/ division =< sameas<=

33

% modulo (A-(A/B*B)) <> sameas!=
** power

Implicit operater precedence is handled in the listed order, with increasing precedence: (Brackets
specify explicit precedence of an expression.)

boolean operators OR, XOR, AND (each has a different precedence)
comparison operators

bitwise operators OR, XOR, AND (each has a different precedence)
shift and bit-mirror operators

addition and subtraction operators

multiplication, division and modulo operators

power operator

Recognized unary operators: (modifying the next number)

+ positive (does nothing)
- negative

~ bitwise NOT

boolean NOT

? absolute value

! convert to boolean

Note that the power operator does not affect unary operator handling. For instance, "- 2 ** 2"
is parsed as "(-2) ** 2" and evaluates to 4.

Although a negative unary and signed bit-shift right operator are provided the expression
evaluator is intrinsically unsigned. Particularly the division, multiplication, modulo and all
comparison operators operate unsigned. Due to this, the expression "-1 < 0" evaluates to zero.

Recognized terms in an expression:

32-bit immediates

8-bit reqisters

16-bit registers including segment registers (except FS, GS)

32-bit compound registers made of two 16-bit registers (eg DXAX)

32-bit registers and FS, GS only if running on a 386+

64-bit MMX registers only if running on a CPU with MMX (r/o for now)
MMOL, MM(O)L accesses the low 32 bits of the register

MMOH, MM(0)H accesses the high 32 bits of the register

MMOZ, MM(0)Z reads the low 32 bits; writes the full register (zero-extend)
MMOS, MM(0)S reads the low 32 bits; writes the full register (sign-extend)
MMO, MM(0) is an alias for the MMOZ syntax

32-bit variables VO..VF

32-bit special variables DCO, DCS, DAO, DAS, DIF, DPI, PPI

16-bit special variables DPR, DPP, PSP, PPR

byte/word/dword memory content (eg byte [seg:ofs], where both the optional
segment as well as the offset are expressions too)

The expression evaluator case-insensitively checks for names of variables and registers as well
as size specifiers.

Enter ?R to display the recognized register names. Enter ?V to display the recognized variables.

34

5.6

5.7

?V - Variables

Available IDebug variables:
* VO0..VF User-specified usage
* DCO Debugger Common Options
* DAO Debugger Assembler/disassembler Options
The following variables cannot be written:
» PSP Debuggee Process
* PPR Debuggee's Parent Process
* PPI Debuggee's Parent Process Interrupt 22h
* DIF Debugger Internal Flags
» DCS Debugger Common Startup options
* DAS Debugger Assembler/disassembler Startup options
* DPR Debugger Process
* DPP Debugger's Parent Process (zero in TSR mode)
» DPI Debugger's Parent process Interrupt 22h (zero in TSR mode)

Enter ?0 to display the options and internal flags.

?RE - R Extended

The RUN commands (T, TP, P, G) and the RE command use the RE command buffer to run
commands. Most commands are allowed to be run from the RE buffer. Disallowed commands
include program-loading L, A, E that switches the line input mode, TSR, Q, Y, RE, and further
RUN commands. When the RE buffer is used as input during T, TP, or P with either of the
WHILE or SILENT keywords, commands that use the auxbuff are also disallowed and will emit
an error noting the conflict.

RE.LIST shows the current RE buffer contents in a format usable by the other RE commands.
RE.APPEND appends the following commands to the buffer, if they fit. RE.REPLACE appends

to the start of the buffer. When specifying commands, an unescaped semicolon is parsed as a
linebreak to break apart individual commands. Backslashes can be used to escape semicolons
and backslashes themselves.

Prefixing a line with an @ (AT sign) causes the command not to be shown to the standard output
of the debugger when run. Otherwise, the command will be shown with a percent sign % or ~%
prompt.

The default RE buffer content is @R. This content is also detected and handled specifically; if
found as the only command the handler directly calls the register dump implementation without
setting up and tearing down the special execution environment used to run arbitrary commands
from the RE buffer.

35

5.8

5.9

?RUN - Run keywords

T (trace), TP (trace except proceed past string operations), and P (proceed) can be followed by a
number of repetitions and then the keyword WHILE, which must be followed by a conditional
expression.

The selected run command is repeated as many times as specified by the number, or until the
WHILE condition evaluates no longer to true.

After the number of repetitions or (if present) after the WHILE condition the keyword SILENT
may follow. If thatis the case, all register dumps done during the run are buffered by the debugger
and the run remains silent. After the run, the last dumps are replayed from the buffer and
displayed. At most as many dumps as fit into the buffer are displayed. (The buffer is currently
up to 8 KiB sized.)

If a number follows behind the SILENT keyword, only at most that many dumps are displayed
from the buffer. The dumps that are displayed are always those last written into the buffer, thus
last occurred.

?0 - Options
Available options: (read/write DCO, read DCS)
e 0001 RX: 32-bit register display
e 0002 TM: trace into interrupts
* 0004 allow dumping of CP-dependant characters
» 0008 always assume InDOS flag non-zero, to debug DOS or TSRs
» 0010 disallow paged output to StdOut
* 0020 allow paged output to non-StdOut
» 0040 display raw hexadecimal content of FPU registers
* 0100 when prompting during paging, do not use DOS for input
» 0200 do not execute HLT instruction to idle
* 0400 do not idle, the keyboard BIOS idles itself
e 1000 indisp_*_size use Sl units (kB = 1000, etc). overrides 2000!
e 2000indisp_*_size use JEDEC units (kB = 1024)
* 4000 enable serial I/O (port 02F8h interrupt 0Bh)
» 8000 disable serial I/O when breaking after 5 seconds Ctrl pressed
Internal flags: (read DIF)
* 000001 Int25/Int26 packet method available
* 000002 Int21.7305 packet method available

36

000004 VDD registered and usable

000008 internal flag for paged output

000010 DEBUG's input isn't StdIn

000020 DEBUG's input is a file

000040 DEBUG's output isn't StdOut

000080 DEBUG's output is a file

001000 state of debuggee's A20

002000 state of debugger's A20 (not implemented: same as previous)
004000 debugger booted independent of a DOS

008000 CPU is at least a 386 (32-bit CPU)

010000 internal flag for tab output processing

020000 running inside NTVDM

100000 internal flag for paged output

400000 in TSR mode (detached debugger process)
01000000 running inside dosemu

04000000 T/TP/P: while condition specified

08000000 TP: P specified (proceed past string ops)
10000000 T/TP/P: silent mode (SILENT specified)

20000000 T/TP/P: silent mode is active, writing to silent buffer

Available assembler/disassembler options: (read/write DAO, read DAS)

01 Disassembler: lowercase output

02 Disassembler: output blank behind comma

04 Disassembler: output addresses in NASM syntax

08 Disassembler: lowercase referenced memory location segreg
10 Disassembler: always show SHORT keyword

20 Disassembler: always show NEAR keyword

40 Disassembler: always show FAR keyword

5.10 ?BOQT - Boot loading

Boot loading commands:

37

BOOT LIST HDA [note: writes to memory @ 600h and 7C00h]

BOOT READ|WRITE [partition] segment [sector] [count]

BOOT QUIT [exits dosemu or shuts down using APM]

BOOT [PROTOCOL=SECTOR] partition

BOOT PROTOCOL=proto [opt] [partition] [filenamel] [filename2] [cmdline]
the following partitions may be specified:

» HDAnum first hard disk, num = partition (1-4 primary, 5+ logical)

HDBnum second hard disk (etc), num = partition

» HDA first hard disk (only valid for READ|WRITE|PROTOCOL=SECTOR)
» FDA first floppy disk

* FDB second floppy disk (etc)

* LDP partition the debugger loaded from

* YDP partition the most recent Y command loaded from

» SDP last used partition (default if no partition specified)

» filename2 may be double-slash // for none

» cmdline is only valid for IDOS, RxDOS.2, RxDOS.3 protocols

» files' directory entries are loaded to 500h and 520h

Available protocols: (default filenames, load segment, then entrypoint)

LDOS LDOS.COM or L[D]DEBUG.COM at 200h, 0:400h
FREEDOS KERNEL.SYS or METAKERN.SYS at 60h, 0:0
EDRDOS DRBIO.SYS at 70h, 0:0

MSDOS6 I0.SYS + MSDOS.SYS at 70h, 0:0

MSDOS7 I0.SYS at 70h, 0:200h

IBMDOS IBMBIO.COM + IBMDOS.COM at 70h, 0:0
NTLDR NTLDR at 2000h, 0:0

BOOTMGR BOOTMGR at 2000h, 0:0

RXDOS.0 RXDOSBIO.SYS + RXDOS.SYS at 70h, 0:0
RXDOS.1 RXBIO.SYS + RXDOS.SYS at 70h, 0:0
RXDOS.2 RXDOS.COM at 70h, 0:400h

38

5.11

RXDOS.3 RXDOS.COM at 200h, 0:400h

CHAIN BOOTSECT.DOS at 7C0Oh, -7C0h:7C00h
SECTOR (default) load partition boot sector or MBR
SECTORALT as SECTOR, but entry at 07C0Oh:0

Available options:

MINPARA=num load at least that many paragraphs

MAXPARA=num load at most that many paragraphs (0 = as many as fit)
SEGMENT=num change segment at that the kernel loads
ENTRY=[num:]Jnum change entrypoint (CS (relative) : IP)
BPB=[num:]Jnum change BPB load address (segment -1 = auto-BPB)
CHECKOFFSET=num set address of word to check, must be even
CHECKVALUE=num set value of word to check (0 = no check)

Boolean options: [opt=bool]

SET_DL_UNIT set dl to load unit

SET_BL_UNIT set bl to load unit

SET_SIDI_CLUSTER set si:di to first cluster

SET_DSSI_DPT set ds:sito DPT address

PUSH_DPT push DPT address and DPT entry address
DATASTART_HIDDEN add hidden sectors to datastart var
SET_AXBX_ DATASTART set ax:bx to datastart var

SET_DSBP_BPB set ds:bp to BPB address

LBA_SET_TYPE set LBA patrtition type in BPB

MESSAGE_TABLE provide message table pointed to at 1EEh
SET_AXBX_ROOT_HIDDEN set ax:bx to root start with hidden sectors
NO_BPB do not load BPB

SET_DSSI_PARTINFO load part table to 600h, point ds:si + ds:bp to it

?BUILD - IDebug build (only revisions)

IDebug (YYYY-MM-DD)
Source Control Revision ID: hg XXXXXXXXXXXX
Uses yyyyyyyy: Revision ID hg zzzzzzzzzzzz

[etc]

39

5.12

5.13

5.14

?B - IDebug build (with options)

IDebug (YYYY-MM-DD)

Source Control Revision ID: hg XXXXXXXXXXXX
Uses yyyyyyyy: Revision ID hg zzzzzzzzzzzz
[etc]

DI command

DM command

D string commands

S match dumps line of following data

RN command

Access SDA current PSP field

Load NTVDM VDD for sector access

X commands for EMS access

RM command and reading MMX registers as variables
Expression evaluator

Indirection in expressions

Variables with user-defined purpose
Debugger option and status variables

PSP variables

Conditional jump notice in register dump
TSR mode (Process detachment)

Boot loader

Permanent breakpoints

Intercepted interrupts: 00, 01, 03, 06, 18, 19
Extended built-in help pages

?SOURCE - IDebug source reference

The original |Debug releases can be obtained from the repo located at
https://hg.ulukai.org/ecm/ldebug (E. C. Masloch's repo)

The most recent manual is hosted at https://ulukai.org/ecm/doc/ in the files |debug.htm,
ldebug.txt, and Idebug.pdf

?L - IDebug license

IDebug - libre 86-DOS debugger
* Copyright (C) 1995-2003 Paul Vojta
» Copyright (C) 2008-2012 C. Masloch

Usage of the works is permitted provided that this instrument is retained with the works, so that
any entity that uses the works is notified of this instrument.

DISCLAIMER: THE WORKS ARE WITHOUT WARRANTY.

This is the license and copyright information that applies to IDebug; but note that there have
been substantial contributions to the code base that are not copyrighted (public domain).

40

https://hg.ulukai.org/ecm/ldebug
https://ulukai.org/ecm/doc/
https://ulukai.org/ecm/doc/ldebug.htm
https://ulukai.org/ecm/doc/ldebug.txt
https://ulukai.org/ecm/doc/ldebug.pdf

6.1

6.2

6.3

Section 6: Additional usage conditions

The program executables can be compressed with a choice of different compressors. The files
then contain a decompression stub. Some of these stubs have their own usage conditions. The
following stub usage conditions apply, if one of these stubs is used.

BriefLZ depacker usage conditions

BriefLZ - small fast Lempel-Ziv

8086 Assembly IDOS iniload payload BriefLZ depacker
Based on: BriefLZ C safe depacker

Copyright (c) 2002-2016 Joergen Ibsen

This software is provided 'as-is’, without any express or implied warranty. In no event will the
authors be held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including commercial
applications, and to alter it and redistribute it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote
the original software. If you use this software in a product, an acknowledgment in the
product documentation would be appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be misrepresented
as being the original software.

3. This notice may not be removed or altered from any source distribution.

LZ4 depacker usage conditions
8086 Assembly IDOS iniload payload LZ4 depacker
by C. Masloch, 2018

Usage of the works is permitted provided that this instrument is retained with the works, so that
any entity that uses the works is notified of this instrument.

DISCLAIMER: THE WORKS ARE WITHOUT WARRANTY.

Snappy depacker usage conditions
8086 Assembly IDOS iniload payload Snappy depacker
by C. Masloch, 2018

41

6.4

6.5

Usage of the works is permitted provided that this instrument is retained with the works, so that
any entity that uses the works is notified of this instrument.

DISCLAIMER: THE WORKS ARE WITHOUT WARRANTY.

Exomizer depacker usage conditions

8086 Assembly IDOS iniload payload exomizer raw depacker
by C. Masloch, 2020

Copyright (c) 2005-2017 Magnus Lind.

This software is provided ‘as-is', without any express or implied warranty. In no event will the
authors be held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including commercial
applications, and to alter it and redistribute it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented * you must not claim that you
wrote the original software. If you use this software in a product, an acknowledgment in
the product documentation would be appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be misrepresented
as being the original software.

3. This notice may not be removed or altered from any distribution.

4. The names of this software and/or it's copyright holders may not be used to endorse or
promote products derived from this software without specific prior written permission.

X compressor depacker usage conditions
MIT License
Copyright (c) 2020 David Barina

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

42

6.6

6.7

6.8

Heatshrink depacker usage conditions
8086 Assembly IDOS iniload payload heatshrink depacker
by C. Masloch, 2020

Usage of the works is permitted provided that this instrument is retained with the works, so that
any entity that uses the works is notified of this instrument.

DISCLAIMER: THE WORKS ARE WITHOUT WARRANTY.
Lzd usage conditions

Lzd - Educational decompressor for the Izip format
Copyright (C) 2013-2019 Antonio Diaz Diaz.

This program is free software. Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE.

LZO depacker usage conditions
8086 Assembly IDOS iniload payload LZO depacker
by C. Masloch, 2020

Usage of the works is permitted provided that this instrument is retained with the works, so that
any entity that uses the works is notified of this instrument.

DISCLAIMER: THE WORKS ARE WITHOUT WARRANTY.

43

Source Control Revision ID

hg 3a05abfb3dac, from commit on at 2020-09-14 23:06:52 +0200

If this is in ecm's repository, you can find it at
https://hg.ulukai.org/ecm/ldebug/rev/3a05abfb3dac

44

https://hg.ulukai.org/ecm/ldebug/rev/3a05abfb3dac

	lDebug manual
	Contents
	Section 1: Building the debugger
	1.1 Components for building
	1.2 How to build
	1.3 Build options

	Section 2: Parameter Reference
	2.1 Number
	2.2 Address
	2.3 Range
	2.4 List
	2.5 List or range
	2.6 Keyword
	2.7 Index
	2.8 Segment
	2.9 Breakpoint
	2.10 Label
	2.11 Port
	2.12 Drive
	2.13 Sector
	2.14 Condition
	2.15 Register
	2.16 Command

	Section 3: Command Reference
	3.1 Empty command - Autorepeat
	3.2 ? command
	3.3 : prefix - GOTO label
	3.4 A command - Assemble
	3.5 B commands - Permanent breakpoints
	3.5.1 BP command - Set breakpoint
	3.5.2 BN command - Set breakpoint number
	3.5.3 BC command - Clear breakpoint
	3.5.4 BD command - Disable breakpoint
	3.5.5 BE command - Enable breakpoint
	3.5.6 BT command - Toggle breakpoint
	3.5.7 BL command - List breakpoints

	3.6 BU command - Break Upwards
	3.7 C command - Compare memory
	3.8 D command - Dump memory
	3.9 DI command - Dump Interrupts
	3.10 DM command - Dump MCBs
	3.11 DZ/D$/D#/DW# commands - Dump strings
	3.12 E command - Enter memory
	3.13 F command - Fill memory
	3.14 G command - Go
	3.15 GOTO command - Control flow branch
	3.16 H command - Hexadecimal add/subtract values
	3.17 I command - Input from port
	3.18 IF command - Control flow conditional
	3.19 L command - Load Program
	3.20 L command - Load Sectors
	3.21 M command - Move memory
	3.22 M command - Set Machine mode
	3.23 N command - Set program Name
	3.24 O command - Output to port
	3.25 P command - Proceed
	3.26 Q command - Quit
	3.27 R command - Display and set Register values
	3.27.1 RE command - Register dump Extended
	3.27.2 RE buffer commands

	3.28 RM command - Display MMX Registers
	3.29 RN command - Display FPU Registers
	3.30 RX command - Toggle 386 Register Extensions display
	3.31 S command - Search memory
	3.32 T command - Trace
	3.32.1 TP command - Trace/Proceed past string ops

	3.33 TM command - Show or set Trace Mode
	3.34 TSR command - Enter TSR mode
	3.35 U command - Disassemble
	3.36 W command - Write Program
	3.37 W command - Write Sectors
	3.38 X commands - Expanded Memory (EMS) commands
	3.39 Y command - Run script file

	Section 4: Variable Reference
	4.1 Registers
	4.2 Options
	4.2.1 DCO - Debugger Common Options
	4.2.2 DCS - Debugger Common Startup options
	4.2.3 DIF - Debugger Internal Flags
	4.2.4 DAO - Debugger Assembly Options
	4.2.5 DAS - Debugger Assembly Startup options
	4.2.6 DPI - Debugger Parent Interrupt 22h
	4.2.7 DPR - Debugger PRocess
	4.2.8 DPP - Debugger Parent Process
	4.2.9 DPS - Debugger Process Selector

	4.3 Default step counts
	4.4 Limits
	4.4.1 RELIMIT - RE buffer execution command limit
	4.4.2 RECOUNT - RE buffer execution command count

	4.5 Return Codes
	4.5.1 RC - Return Code
	4.5.2 ERC - Error Return Code

	4.6 Addresses
	4.6.1 A address (AAS:AAO)
	4.6.2 D address (ADS:ADO)
	4.6.3 Address behind R disassembly (ABS:ABO)
	4.6.4 U address (AUS:AUO)
	4.6.5 E address (AES:AEO)
	4.6.6 DZ address (AZS:AZO)
	4.6.7 D$ address (ACS:ACO)
	4.6.8 D# address (APS:APO)
	4.6.9 DW# address (AWS:AWO)
	4.6.10 DX address (AXO)

	4.7 Serial configuration
	4.7.1 DSR - Debugger Serial Rows
	4.7.2 DST - Debugger Serial Timeout
	4.7.3 DSF - Debugger Serial FIFO size

	4.8 _DEBUG1 variables
	4.8.1 TRx - Test Readmem variables
	4.8.2 TWx - Test Writemem variables
	4.8.3 TLx - Test getLinear variables
	4.8.4 TSx - Test getSegmented variables

	4.9 _DEBUG3 variables
	4.9.1 MT0 - Mask Test 0
	4.9.2 MT1 - Mask Test 1

	4.10 Y command variables
	4.10.1 YSF - Y Script Flags

	4.11 V variables - Variables with user-defined purpose
	4.12 PSP variables
	4.12.1 PSP - Process Segment Prefix
	4.12.2 PPR - Process PaRent
	4.12.3 PPI - Process Parent Interrupt 22h

	Section 5: Online help pages
	5.1 ? - Main online help
	5.2 ?R - Registers
	5.3 ?F - Flags
	5.4 ?C - Conditionals
	5.5 ?E - Expressions
	5.6 ?V - Variables
	5.7 ?RE - R Extended
	5.8 ?RUN - Run keywords
	5.9 ?O - Options
	5.10 ?BOOT - Boot loading
	5.11 ?BUILD - lDebug build (only revisions)
	5.12 ?B - lDebug build (with options)
	5.13 ?SOURCE - lDebug source reference
	5.14 ?L - lDebug license

	Section 6: Additional usage conditions
	6.1 BriefLZ depacker usage conditions
	6.2 LZ4 depacker usage conditions
	6.3 Snappy depacker usage conditions
	6.4 Exomizer depacker usage conditions
	6.5 X compressor depacker usage conditions
	6.6 Heatshrink depacker usage conditions
	6.7 Lzd usage conditions
	6.8 LZO depacker usage conditions

	Source Control Revision ID

