
NASM 2.05 based x86 Instruction
Reference

Copyright 1996-2009 the NASM Authors - All rights reserved. NASM is now licensed under
the 2-clause BSD license, also known as the simplified BSD license.

This document has been compiled on 2024-04-14.

1

Contents

Section 1: License . 16

Appendix A: x86 Instruction Reference 17

A.1 Key to Operand Specifications 17

A.2 Key to Opcode Descriptions 18

A.2.1 Register Values . 19

A.2.2 Condition Codes . 20

A.2.3 SSE Condition Predicates 21

A.2.4 Status Flags . 22

A.2.5 Control Flags . 22

A.2.5.1 IF - Interrupt flag 23

A.2.5.2 DF - Direction flag 23

A.2.5.3 TF - Trace flag 23

A.2.6 Effective Address Encoding: ModR/M and SIB 23

A.2.6.1 ModR/M encoding a register 24

A.2.6.2 Memory a16 ModR/M encoding 24

A.2.6.3 Memory a32 ModR/M and SIB encoding 24

A.2.7 Register Extensions: The REX Prefix 25

A.3 Key to Instruction Flags . 26

A.4 Emulator notes . 27

A.4.1 Common corner cases 27

A.4.2 Emulator call encodings 27

A.5 x86 Instruction Set . 27

A.5.1 AAA, AAS, AAM, AAD: ASCII Adjustments 27

A.5.2 ADC: Add with Carry 28

A.5.3 ADD: Add Integers . 29

2

A.5.4 ADDPD: ADD Packed Double-Precision FP Values 30

A.5.5 ADDPS: ADD Packed Single-Precision FP Values 30

A.5.6 ADDSD: ADD Scalar Double-Precision FP Values 30

A.5.7 ADDSS: ADD Scalar Single-Precision FP Values 30

A.5.8 AND: Bitwise AND . 30

A.5.9 ANDNPD: Bitwise Logical AND NOT of Packed Double-
Precision FP Values . 31

A.5.10 ANDNPS: Bitwise Logical AND NOT of Packed Single-
Precision FP Values . 32

A.5.11 ANDPD: Bitwise Logical AND For Single FP 32

A.5.12 ANDPS: Bitwise Logical AND For Single FP 32

A.5.13 ARPL: Adjust RPL Field of Selector 32

A.5.14 BOUND: Check Array Index against Bounds 33

A.5.15 BSF, BSR: Bit Scan 33

A.5.16 BSWAP: Byte Swap . 33

A.5.17 BT, BTC, BTR, BTS: Bit Test 33

A.5.18 CALL: Call Subroutine 34

A.5.19 CBW, CWD, CDQ, CWDE: Sign Extensions 35

A.5.20 CLC, CLD, CLI , CLTS: Clear Flags 35

A.5.21 CLFLUSH: Flush Cache Line 35

A.5.22 CMC: Complement Carry Flag 36

A.5.23 CMOVcc: Conditional Move 36

A.5.24 CMP: Compare Integers 36

A.5.25 CMPccPD: Packed Double-Precision FP Compare 37

A.5.26 CMPccPS: Packed Single-Precision FP Compare 37

A.5.27 CMPSB, CMPSW, CMPSD: Compare Strings 38

A.5.27.1 Pseudo-code examples 38

A.5.28 CMPccSD: Scalar Double-Precision FP Compare 39

A.5.29 CMPccSS: Scalar Single-Precision FP Compare 40

A.5.30 CMPXCHG, CMPXCHG486: Compare and Exchange 40

A.5.31 CMPXCHG8B: Compare and Exchange Eight Bytes 41

3

A.5.32 COMISD: Scalar Ordered Double-Precision FP Compare
and Set EFLAGS . 41

A.5.33 COMISS: Scalar Ordered Single-Precision FP Compare and
Set EFLAGS . 41

A.5.34 CPUID: Get CPU Identification Code 42

A.5.35 CVTDQ2PD: Packed Signed INT32 to Packed Double-
Precision FP Conversion . 42

A.5.36 CVTDQ2PS: Packed Signed INT32 to Packed Single-
Precision FP Conversion . 43

A.5.37 CVTPD2DQ: Packed Double-Precision FP to Packed Signed
INT32 Conversion . 43

A.5.38 CVTPD2PI: Packed Double-Precision FP to Packed Signed
INT32 Conversion . 43

A.5.39 CVTPD2PS: Packed Double-Precision FP to Packed Single-
Precision FP Conversion . 43

A.5.40 CVTPI2PD: Packed Signed INT32 to Packed Double-
Precision FP Conversion . 44

A.5.41 CVTPI2PS: Packed Signed INT32 to Packed Single-FP
Conversion . 44

A.5.42 CVTPS2DQ: Packed Single-Precision FP to Packed Signed
INT32 Conversion . 44

A.5.43 CVTPS2PD: Packed Single-Precision FP to Packed Double-
Precision FP Conversion . 44

A.5.44 CVTPS2PI: Packed Single-Precision FP to Packed Signed
INT32 Conversion . 44

A.5.45 CVTSD2SI: Scalar Double-Precision FP to Signed INT32
Conversion . 45

A.5.46 CVTSD2SS: Scalar Double-Precision FP to Scalar Single-
Precision FP Conversion . 45

A.5.47 CVTSI2SD: Signed INT32 to Scalar Double-Precision FP
Conversion . 45

A.5.48 CVTSI2SS: Signed INT32 to Scalar Single-Precision FP
Conversion . 45

A.5.49 CVTSS2SD: Scalar Single-Precision FP to Scalar Double-
Precision FP Conversion . 46

A.5.50 CVTSS2SI: Scalar Single-Precision FP to Signed INT32
Conversion . 46

4

A.5.51 CVTTPD2DQ: Packed Double-Precision FP to Packed
Signed INT32 Conversion with Truncation 46

A.5.52 CVTTPD2PI: Packed Double-Precision FP to Packed
Signed INT32 Conversion with Truncation 46

A.5.53 CVTTPS2DQ: Packed Single-Precision FP to Packed Signed
INT32 Conversion with Truncation 47

A.5.54 CVTTPS2PI: Packed Single-Precision FP to Packed Signed
INT32 Conversion with Truncation 47

A.5.55 CVTTSD2SI: Scalar Double-Precision FP to Signed INT32
Conversion with Truncation 47

A.5.56 CVTTSS2SI: Scalar Single-Precision FP to Signed INT32
Conversion with Truncation 47

A.5.57 DAA, DAS: Decimal Adjustments 48

A.5.58 DEC: Decrement Integer 48

A.5.59 DIV : Unsigned Integer Divide 48

A.5.60 DIVPD: Packed Double-Precision FP Divide 49

A.5.61 DIVPS: Packed Single-Precision FP Divide 49

A.5.62 DIVSD: Scalar Double-Precision FP Divide 49

A.5.63 DIVSS: Scalar Single-Precision FP Divide 49

A.5.64 EMMS: Empty MMX State 50

A.5.65 ENTER: Create Stack Frame 50

A.5.66 F2XM1: Calculate 2**X-1 50

A.5.67 FABS: Floating-Point Absolute Value 50

A.5.68 FADD, FADDP: Floating-Point Addition 51

A.5.69 FBLD, FBSTP: BCD Floating-Point Load and Store 51

A.5.70 FCHS: Floating-Point Change Sign 51

A.5.71 FCLEX, FNCLEX: Clear Floating-Point Exceptions 51

A.5.72 FCMOVcc: Floating-Point Conditional Move 51

A.5.73 FCOM, FCOMP, FCOMPP, FCOMI, FCOMIP: Floating-Point
Compare . 52

A.5.74 FCOS: Cosine . 53

A.5.75 FDECSTP: Decrement Floating-Point Stack Pointer 53

5

A.5.76 FxDISI , FxENI : Disable and Enable Floating-Point
Interrupts . 53

A.5.77 FDIV , FDIVP, FDIVR, FDIVRP: Floating-Point Division 53

A.5.78 FEMMS: Faster Enter/Exit of the MMX or floating-point
state . 54

A.5.79 FFREE: Flag Floating-Point Register as Unused 54

A.5.80 FIADD: Floating-Point/Integer Addition 54

A.5.81 FICOM, FICOMP: Floating-Point/Integer Compare 55

A.5.82 FIDIV , FIDIVR : Floating-Point/Integer Division 55

A.5.83 FILD , FIST , FISTP : Floating-Point/Integer Conversion 55

A.5.84 FIMUL: Floating-Point/Integer Multiplication 55

A.5.85 FINCSTP: Increment Floating-Point Stack Pointer 55

A.5.86 FINIT , FNINIT : initialize Floating-Point Unit 56

A.5.87 FISUB: Floating-Point/Integer Subtraction 56

A.5.88 FLD: Floating-Point Load 56

A.5.89 FLDxx : Floating-Point Load Constants 56

A.5.90 FLDCW: Load Floating-Point Control Word 57

A.5.91 FLDENV: Load Floating-Point Environment 57

A.5.92 FMUL, FMULP: Floating-Point Multiply 57

A.5.93 FNOP: Floating-Point No Operation 57

A.5.94 FPATAN, FPTAN: Arctangent and Tangent 57

A.5.95 FPREM, FPREM1: Floating-Point Partial Remainder 58

A.5.96 FRNDINT: Floating-Point Round to Integer 58

A.5.97 FSAVE, FRSTOR: Save/Restore Floating-Point State 58

A.5.98 FSCALE: Scale Floating-Point Value by Power of Two 58

A.5.99 FSETPM: Set Protected Mode 58

A.5.100 FSIN , FSINCOS: Sine and Cosine 59

A.5.101 FSQRT: Floating-Point Square Root 59

A.5.102 FST, FSTP: Floating-Point Store 59

A.5.103 FSTCW: Store Floating-Point Control Word 59

A.5.104 FSTENV: Store Floating-Point Environment 59

6

A.5.105 FSTSW: Store Floating-Point Status Word 60

A.5.106 FSUB, FSUBP, FSUBR, FSUBRP: Floating-Point Subtract 60

A.5.107 FTST: TestST0 Against Zero 60

A.5.108 FUCOMxx: Floating-Point Unordered Compare 61

A.5.109 FXAM: Examine Class of Value inST0 61

A.5.110 FXCH: Floating-Point Exchange 61

A.5.111 FXRSTOR: RestoreFP, MMXandSSEState 62

A.5.112 FXSAVE: StoreFP, MMXandSSEState 62

A.5.113 FXTRACT: Extract Exponent and Significand 62

A.5.114 FYL2X, FYL2XP1: Compute Y times Log2(X) or
Log2(X+1) . 62

A.5.115 HLT: Halt Processor 62

A.5.116 IBTS : Insert Bit String 63

A.5.117 IDIV : Signed Integer Divide 63

A.5.118 IMUL: Signed Integer Multiply 63

A.5.119 IN : Input from I/O Port 64

A.5.120 INC: Increment Integer 64

A.5.121 INSB, INSW, INSD: Input String from I/O Port 65

A.5.121.1 Pseudo-code examples 65

A.5.122 INT : Software Interrupt 66

A.5.123 INT3 , INT1 , ICEBP, INT01 : Breakpoints 66

A.5.124 INTO: Interrupt if Overflow 66

A.5.125 INVD: Invalidate Internal Caches 66

A.5.126 INVLPG: Invalidate TLB Entry 66

A.5.127 IRET , IRETW, IRETD: Return from Interrupt 67

A.5.128 Jcc : Conditional Branch 67

A.5.129 JCXZ, JECXZ: Jump if CX/ECX Zero 67

A.5.130 JMP: Jump . 68

A.5.131 LAHF: Load AH from Flags 68

A.5.132 LAR: Load Access Rights 69

7

A.5.133 LDMXCSR: Load Streaming SIMD Extension
Control/Status . 69

A.5.134 LDS, LES, LFS, LGS, LSS: Load Far Pointer 69

A.5.135 LEA: Load Effective Address 69

A.5.136 LEAVE: Destroy Stack Frame 70

A.5.137 LFENCE: Load Fence 70

A.5.138 LGDT, LIDT , LLDT: Load Descriptor Tables 70

A.5.139 LMSW: Load/Store Machine Status Word 71

A.5.140 LOADALL, LOADALL286: Load Processor State 71

A.5.141 LODSB, LODSW, LODSD: Load from String 71

A.5.141.1 Pseudo-code examples 71

A.5.142 LOOP, LOOPE, LOOPZ, LOOPNE, LOOPNZ: Loop with
Counter . 72

A.5.143 LSL: Load Segment Limit 72

A.5.144 LTR: Load Task Register 72

A.5.145 MASKMOVDQU: Byte Mask Write 73

A.5.146 MASKMOVQ: Byte Mask Write 73

A.5.147 MAXPD: Return Packed Double-Precision FP Maximum 73

A.5.148 MAXPS: Return Packed Single-Precision FP Maximum 73

A.5.149 MAXSD: Return Scalar Double-Precision FP Maximum 73

A.5.150 MAXSS: Return Scalar Single-Precision FP Maximum 73

A.5.151 MFENCE: Memory Fence 74

A.5.152 MINPD: Return Packed Double-Precision FP Minimum 74

A.5.153 MINPS: Return Packed Single-Precision FP Minimum 74

A.5.154 MINSD: Return Scalar Double-Precision FP Minimum 74

A.5.155 MINSS: Return Scalar Single-Precision FP Minimum 75

A.5.156 MOV: Move Data . 75

A.5.157 MOVAPD: Move Aligned Packed Double-Precision FP
Values . 76

A.5.158 MOVAPS: Move Aligned Packed Single-Precision FP
Values . 76

A.5.159 MOVD: Move Doubleword to/from MMX Register 76

8

A.5.160 MOVDQ2Q: Move Quadword from XMM to MMX register. 76

A.5.161 MOVDQA: Move Aligned Double Quadword 77

A.5.162 MOVDQU: Move Unaligned Double Quadword 77

A.5.163 MOVHLPS: Move Packed Single-Precision FP High to Low 77

A.5.164 MOVHPD: Move High Packed Double-Precision FP 77

A.5.165 MOVHPS: Move High Packed Single-Precision FP 77

A.5.166 MOVLHPS: Move Packed Single-Precision FP Low to High 78

A.5.167 MOVLPD: Move Low Packed Double-Precision FP 78

A.5.168 MOVLPS: Move Low Packed Single-Precision FP 78

A.5.169 MOVMSKPD: Extract Packed Double-Precision FP Sign
Mask . 79

A.5.170 MOVMSKPS: Extract Packed Single-Precision FP Sign
Mask . 79

A.5.171 MOVNTDQ: Move Double Quadword Non Temporal 79

A.5.172 MOVNTI: Move Doubleword Non Temporal 79

A.5.173 MOVNTPD: Move Aligned Four Packed Single-Precision
FP Values Non Temporal . 79

A.5.174 MOVNTPS: Move Aligned Four Packed Single-Precision
FP Values Non Temporal . 79

A.5.175 MOVNTQ: Move Quadword Non Temporal 79

A.5.176 MOVQ: Move Quadword to/from MMX Register 80

A.5.177 MOVQ2DQ: Move Quadword from MMX to XMM register. 80

A.5.178 MOVSB, MOVSW, MOVSD: Move String 80

A.5.178.1 Pseudo-code examples 80

A.5.179 MOVSD: Move Scalar Double-Precision FP Value 81

A.5.180 MOVSS: Move Scalar Single-Precision FP Value 81

A.5.181 MOVSX, MOVZX: Move Data with Sign or Zero Extend 81

A.5.182 MOVUPD: Move Unaligned Packed Double-Precision FP
Values . 81

A.5.183 MOVUPS: Move Unaligned Packed Single-Precision FP
Values . 82

A.5.184 MUL: Unsigned Integer Multiply 82

A.5.185 MULPD: Packed Single-FP Multiply 82

9

A.5.186 MULPS: Packed Single-FP Multiply 82

A.5.187 MULSD: Scalar Single-FP Multiply 82

A.5.188 MULSS: Scalar Single-FP Multiply 82

A.5.189 NEG, NOT: Two's and Ones' Complement 83

A.5.190 NOP: No Operation 83

A.5.191 OR: Bitwise OR . 83

A.5.192 ORPD: Bit-wise Logical OR of Double-Precision FP Data 84

A.5.193 ORPS: Bit-wise Logical OR of Single-Precision FP Data 84

A.5.194 OUT: Output Data to I/O Port 84

A.5.195 OUTSB, OUTSW, OUTSD: Output String to I/O Port 84

A.5.195.1 Pseudo-code examples 85

A.5.196 PACKSSDW, PACKSSWB, PACKUSWB: Pack Data 85

A.5.197 PADDB, PADDW, PADDD: Add Packed Integers 86

A.5.198 PADDQ: Add Packed Quadword Integers 86

A.5.199 PADDSB, PADDSW: Add Packed Signed Integers With
Saturation . 86

A.5.200 PADDSIW: MMX Packed Addition to Implicit Destination 86

A.5.201 PADDUSB, PADDUSW: Add Packed Unsigned Integers
With Saturation . 87

A.5.202 PAND, PANDN: MMX Bitwise AND and AND-NOT 87

A.5.203 PAUSE: Spin Loop Hint 87

A.5.204 PAVEB: MMX Packed Average 87

A.5.205 PAVGB PAVGW: Average Packed Integers 88

A.5.206 PAVGUSB: Average of unsigned packed 8-bit values 88

A.5.207 PCMPxx: Compare Packed Integers. 88

A.5.208 PDISTIB : MMX Packed Distance and Accumulate with
Implied Register . 89

A.5.209 PEXTRW: Extract Word 89

A.5.210 PF2ID : Packed Single-Precision FP to Integer Convert 89

A.5.211 PF2IW: Packed Single-Precision FP to Integer Word
Convert . 90

A.5.212 PFACC: Packed Single-Precision FP Accumulate 90

10

A.5.213 PFADD: Packed Single-Precision FP Addition 90

A.5.214 PFCMPxx: Packed Single-Precision FP Compare 90

A.5.215 PFMAX: Packed Single-Precision FP Maximum 90

A.5.216 PFMIN: Packed Single-Precision FP Minimum 91

A.5.217 PFMUL: Packed Single-Precision FP Multiply 91

A.5.218 PFNACC: Packed Single-Precision FP Negative
Accumulate . 91

A.5.219 PFPNACC: Packed Single-Precision FP Mixed
Accumulate . 91

A.5.220 PFRCP: Packed Single-Precision FP Reciprocal
Approximation . 91

A.5.221 PFRCPIT1: Packed Single-Precision FP Reciprocal, First
Iteration Step . 92

A.5.222 PFRCPIT2: Packed Single-Precision FP Reciprocal/
Reciprocal Square Root, Second Iteration Step 92

A.5.223 PFRSQIT1: Packed Single-Precision FP Reciprocal
Square Root, First Iteration Step 92

A.5.224 PFRSQRT: Packed Single-Precision FP Reciprocal Square
Root Approximation . 92

A.5.225 PFSUB: Packed Single-Precision FP Subtract 93

A.5.226 PFSUBR: Packed Single-Precision FP Reverse Subtract 93

A.5.227 PI2FD : Packed Doubleword Integer to Single-Precision
FP Convert . 93

A.5.228 PI2FW: Packed Word Integer to Single-Precision FP
Convert . 93

A.5.229 PINSRW: Insert Word 93

A.5.230 PMACHRIW: Packed Multiply and Accumulate with
Rounding . 93

A.5.231 PMADDWD: MMX Packed Multiply and Add 94

A.5.232 PMAGW: MMX Packed Magnitude 94

A.5.233 PMAXSW: Packed Signed Integer Word Maximum 94

A.5.234 PMAXUB: Packed Unsigned Integer Byte Maximum 95

A.5.235 PMINSW: Packed Signed Integer Word Minimum 95

A.5.236 PMINUB: Packed Unsigned Integer Byte Minimum 95

11

A.5.237 PMOVMSKB: Move Byte Mask To Integer 95

A.5.238 PMULHRWC, PMULHRIW: Multiply Packed 16-bit Integers
With Rounding, and Store High Word 95

A.5.239 PMULHRWA: Multiply Packed 16-bit Integers With
Rounding, and Store High Word 96

A.5.240 PMULHUW: Multiply Packed 16-bit Integers, and Store
High Word . 96

A.5.241 PMULHW, PMULLW: Multiply Packed 16-bit Integers, and
Store . 96

A.5.242 PMULUDQ: Multiply Packed Unsigned 32-bit Integers, and
Store. 96

A.5.243 PMVccZB: MMX Packed Conditional Move 97

A.5.244 POP: Pop Data from Stack 97

A.5.245 POPAx: Pop All General-Purpose Registers 98

A.5.246 POPFx: Pop Flags Register 98

A.5.247 POR: MMX Bitwise OR 98

A.5.248 PREFETCH: Prefetch Data Into Caches 98

A.5.249 PREFETCHh: Prefetch Data Into Caches 99

A.5.250 PSADBW: Packed Sum of Absolute Differences 99

A.5.251 PSHUFD: Shuffle Packed Doublewords 99

A.5.252 PSHUFHW: Shuffle Packed High Words 99

A.5.253 PSHUFLW: Shuffle Packed Low Words 100

A.5.254 PSHUFW: Shuffle Packed Words 100

A.5.255 PSLLx: Packed Data Bit Shift Left Logical 100

A.5.256 PSRAx: Packed Data Bit Shift Right Arithmetic 101

A.5.257 PSRLx: Packed Data Bit Shift Right Logical 101

A.5.258 PSUBx: Subtract Packed Integers 102

A.5.259 PSUBSxx, PSUBUSx: Subtract Packed Integers With
Saturation . 102

A.5.260 PSUBSIW: MMX Packed Subtract with Saturation to
Implied Destination . 103

A.5.261 PSWAPD: Swap Packed Data 103

A.5.262 PUNPCKxxx: Unpack and Interleave Data 103

12

A.5.263 PUSH: Push Data on Stack 104

A.5.264 PUSHAx: Push All General-Purpose Registers 105

A.5.265 PUSHFx: Push Flags Register 105

A.5.266 PXOR: MMX Bitwise XOR 106

A.5.267 RCL, RCR: Bitwise Rotate through Carry Bit 106

A.5.268 RCPPS: Packed Single-Precision FP Reciprocal 106

A.5.269 RCPSS: Scalar Single-Precision FP Reciprocal 107

A.5.270 RDMSR: Read Model-Specific Registers 107

A.5.271 RDPMC: Read Performance-Monitoring Counters 107

A.5.272 RDSHR: Read SMM Header Pointer Register 107

A.5.273 RDTSC: Read Time-Stamp Counter 107

A.5.274 RET, RETF, RETN: Return from Procedure Call 107

A.5.275 ROL, ROR: Bitwise Rotate 108

A.5.276 RSDC: Restore Segment Register and Descriptor 108

A.5.277 RSLDT: Restore Segment Register and Descriptor 108

A.5.278 RSM: Resume from System-Management Mode 108

A.5.279 RSQRTPS: Packed Single-Precision FP Square Root
Reciprocal . 108

A.5.280 RSQRTSS: Scalar Single-Precision FP Square Root
Reciprocal . 109

A.5.281 RSTS: Restore TSR and Descriptor 109

A.5.282 SAHF: Store AH to Flags 109

A.5.283 SAL, SAR: Bitwise Arithmetic Shifts 109

A.5.284 SALC: Set AL from Carry Flag 110

A.5.285 SBB: Subtract with Borrow 110

A.5.286 SCASB, SCASW, SCASD: Scan String 111

A.5.286.1 Pseudo-code examples 111

A.5.287 SETcc: Set Register from Condition 111

A.5.288 SFENCE: Store Fence 111

A.5.289 SGDT, SIDT , SLDT: Store Descriptor Table Pointers 112

A.5.290 SHL, SHR: Bitwise Logical Shifts 112

13

A.5.291 SHLD, SHRD: Bitwise Double-Precision Shifts 113

A.5.292 SHUFPD: Shuffle Packed Double-Precision FP Values 113

A.5.293 SHUFPS: Shuffle Packed Single-Precision FP Values 114

A.5.294 SMI: System Management Interrupt 114

A.5.295 SMINT, SMINTOLD: Software SMM Entry (CYRIX) 114

A.5.296 SMSW: Store Machine Status Word 114

A.5.297 SQRTPD: Packed Double-Precision FP Square Root 114

A.5.298 SQRTPS: Packed Single-Precision FP Square Root 115

A.5.299 SQRTSD: Scalar Double-Precision FP Square Root 115

A.5.300 SQRTSS: Scalar Single-Precision FP Square Root 115

A.5.301 STC, STD, STI : Set Flags 115

A.5.302 STMXCSR: Store Streaming SIMD Extension
Control/Status . 115

A.5.303 STOSB, STOSW, STOSD: Store Byte to String 115

A.5.303.1 Pseudo-code examples 116

A.5.304 STR: Store Task Register 116

A.5.305 SUB: Subtract Integers 116

A.5.306 SUBPD: Packed Double-Precision FP Subtract 117

A.5.307 SUBPS: Packed Single-Precision FP Subtract 117

A.5.308 SUBSD: Scalar Single-FP Subtract 117

A.5.309 SUBSS: Scalar Single-FP Subtract 117

A.5.310 SVDC: Save Segment Register and Descriptor 118

A.5.311 SVLDT: Save LDTR and Descriptor 118

A.5.312 SVTS: Save TSR and Descriptor 118

A.5.313 SYSCALL: Call Operating System 118

A.5.314 SYSENTER: Fast System Call 118

A.5.315 SYSEXIT: Fast Return From System Call 119

A.5.316 SYSRET: Return From Operating System 120

A.5.317 TEST: Test Bits (notional bitwise AND) 120

A.5.318 UCOMISD: Unordered Scalar Double-Precision FP
compare and set EFLAGS . 120

14

A.5.319 UCOMISS: Unordered Scalar Single-Precision FP
compare and set EFLAGS . 121

A.5.320 UD0, UD1, UD2: Undefined Instruction 121

A.5.321 UMOV: User Move Data 121

A.5.322 UNPCKHPD: Unpack and Interleave High Packed Double-
Precision FP Values . 121

A.5.323 UNPCKHPS: Unpack and Interleave High Packed Single-
Precision FP Values . 122

A.5.324 UNPCKLPD: Unpack and Interleave Low Packed Double-
Precision FP Data . 122

A.5.325 UNPCKLPS: Unpack and Interleave Low Packed Single-
Precision FP Data . 122

A.5.326 VERR, VERW: Verify Segment Readability/Writability 122

A.5.327 WAIT: Wait for Floating-Point Processor 123

A.5.328 WBINVD: Write Back and Invalidate Cache 123

A.5.329 WRMSR: Write Model-Specific Registers 123

A.5.330 WRSHR: Write SMM Header Pointer Register 123

A.5.331 XADD: Exchange and Add 123

A.5.332 XBTS: Extract Bit String 123

A.5.333 XCHG: Exchange . 124

A.5.334 XLATB: Translate Byte in Lookup Table 124

A.5.335 XOR: Bitwise Exclusive OR 124

A.5.336 XORPD: Bitwise Logical XOR of Double-Precision FP
Values . 125

A.5.337 XORPS: Bitwise Logical XOR of Single-Precision FP
Values . 125

Source Control Revision ID . 126

Index . 127

15

Section 1: License

NASM is now licensed under the 2-clause BSD license, also known as the simplified BSD
license.

Copyright 1996-2009 the NASM Authors - All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

16

Appendix A: x86 Instruction Reference

This appendix provides a complete list of the machine instructions which NASM will assemble,
and a short description of the function of each one.

It is not intended to be an exhaustive documentation on the fine details of the instructions'
function, such as which exceptions they can trigger: for such documentation, you should go to
Intel's Web site,http://developer.intel.com/design/Pentium4/manuals/ .

Instead, this appendix is intended primarily to provide documentation on the way the instructions
may be used within NASM. For example, looking upLOOPwill tell you that NASM allows
CXor ECXto be specified as an optional second argument to theLOOPinstruction, to enforce
which of the two possible counter registers should be used if the default is not the one desired.

The instructions are not quite listed in alphabetical order, since groups of instructions with
similar functions are lumped together in the same entry. Most of them don't move very far from
their alphabetic position because of this.

A.1 Key to Operand Specifications
The instruction descriptions in this appendix specify their operands using the following notation:

• Registers:reg8 denotes an 8-bit general purpose register,reg16 denotes a 16-bit general
purpose register,reg32 a 32-bit one andreg64 a 64-bit one.fpureg denotes one of
the eight FPU stack registers,mmxreg denotes one of the eight 64-bit MMX registers,
andsegreg denotes a segment register.xmmreg denotes one of the 8, or 16 in x64 long
mode, SSE XMM registers. In addition, some registers (such asAL, DX, ECXor RAX) may
be specified explicitly.

• Immediate operands:imm denotes a generic immediate operand.imm8, imm16 and
imm32 are used when the operand is intended to be a specific size. For some of these
instructions, NASM allows an explicit specifier: for example,ADD ESP,16 could be
interpreted as eitherADD r/m32,imm32 orADD r/m32,imm8 . If the immediate value
is known during the assembling of that instruction, and fits in the range of a signed byte,
then recent versions of NASM automatically optimise the instruction by choosing the latter
form. It is allowed to specifyADD ESP,BYTE 16explicitly, which is needed to indicate
that optimisation in case the immediate value is not known by NASM. (Eg, if it is a symbol
reference only resolved by the linker.) Conversely, using the qualifiersSTRICT WORD
or STRICT DWORDforces NASM to use the longer forms. There is a special case of the
allowance of animm64 for particular x64 versions of the MOV instruction.

• Memory references:memdenotes a generic memory reference;mem8, mem16, mem32,
mem64and mem80are used when the operand needs to be a specific size. Again, a
specifier is needed in some cases:DEC [address] is ambiguous and will be rejected

17

http://developer.intel.com/design/Pentium4/manuals/

by NASM. You must specifyDEC BYTE [address] , DEC WORD [address] or
DEC DWORD [address] instead.

• Restricted memory references: one form of theMOVinstruction allows a memory address
to be specifiedwithoutallowing the normal range of register combinations and effective
address processing. This is denoted bymemoffs8 , memoffs16 , memoffs32 or
memoffs64 .

• Register or memory choices: many instructions can accept either a registeror a
memory reference as an operand.r/m8 is shorthand forreg8/mem8 ; similarly r/m16
and r/m32 . On legacy x86 modes,r/m64 is MMX-related, and is shorthand for
mmxreg/mem64. When utilizing the x86-64 architecture extension,r/m64 denotes use
of a 64-bit GPR as well, and is shorthand forreg64/mem64 .

A.2 Key to Opcode Descriptions
This appendix also provides the opcodes which NASM will generate for each form of each
instruction. The opcodes are listed in the following way:

• A hex number, such as3F, indicates a fixed byte containing that number.

• A hex number followed by+r , such asC8+r , indicates that one of the operands to the
instruction is a register, and the ‘register value’ of that register should be added to the hex
number to produce the generated byte. For example, EDX has register value 2, so the code
C8+r , when the register operand is EDX, generates the hex byteCA. Register values for
specific registers are given in section A.2.1.

• A hex number followed by+cc , such as70+cc , indicates that the instruction name has
a condition code suffix, and the numeric representation of the condition code should be
added to the hex number to produce the generated byte. For example, the code70+cc ,
when the instruction contains theNEcondition, generates the hex byte75 . Condition codes
and their numeric representations are given in section A.2.2. In one case,70+(cc^1) is
given, which means that the inverse condition code is encoded in the byte.

• A slash followed by a digit, such as/2 , indicates that one of the operands to the instruction
is a memory address or register (denotedmemor r/m , with an optional size). This is to be
encoded as an effective address, with a ModR/M byte, an optional SIB byte, and an optional
displacement, and the spare (register) field of the ModR/M byte should be the digit given
(which will be from 0 to 7, so it fits in three bits). The encoding of effective addresses is
given in section A.2.6.

• The code/r combines the above two: it indicates that one of the operands is a memory
address orr/m , and another is a register, and that an effective address should be generated
with the spare (register) field in the ModR/M byte being equal to the ‘register value’ of
the register operand. The encoding of effective addresses is given in section A.2.6; register
values are given in section A.2.1.

• The codesib , iw andid indicate that one of the operands to the instruction is an immediate
value, and that this is to be encoded as a byte, little-endian word or little-endian doubleword
respectively.

• The codesrb , rw andrd indicate that one of the operands to the instruction is an immediate
value, and that thedifferencebetween this value and the address of the end of the instruction

18

is to be encoded as a byte, word or doubleword respectively. Where the formrw/rd
appears, it indicates that eitherrw or rd should be used according to whether assembly is
being performed inBITS 16 or BITS 32 state respectively.

• The codesow andod indicate that one of the operands to the instruction is a reference to
the contents of a memory address specified as an immediate value: this encoding is used in
some forms of theMOVinstruction in place of the standard effective-address mechanism.
The displacement is encoded as a word or doubleword. Again,ow/od denotes thatow or
od should be chosen according to theBITS setting.

• The codeso16 ando32 indicate that the given form of the instruction should be assembled
with operand size 16 or 32 bits. In other words,o16 indicates a66 prefix in BITS 32
state, but generates no code inBITS 16 state; ando32 indicates a66 prefix inBITS 16
state but generates nothing inBITS 32 .

• The codesa16 anda32 , similarly too16 ando32 , indicate the address size of the given
form of the instruction. Where this does not match theBITS setting, a67 prefix is required.
Please note thata16 is useless in long mode as 16-bit addressing is depreciated on the
x86-64 architecture extension.

A.2.1 Register Values

Where an instruction requires a register value, it is already implicit in the encoding of the rest
of the instruction what type of register is intended: an 8-bit general-purpose register, a segment
register, a debug register, an MMX register, or whatever. Therefore there is no problem with
registers of different types sharing an encoding value.

Please note that for the register classes listed below, the register extensions (REX) classes require
the use of the REX prefix, which is only available when in long mode on an x86-64 processor.
This pretty much goes for any register that has a number higher than 7.

The encodings for the various classes of register are:

• 8-bit general registers:AL is 0,CL is 1,DL is 2,BL is 3,AHis 4,CHis 5,DHis 6 andBH
is 7. Please note thatAH, BH, CHandDHare not addressable when using the REX prefix
in long mode.

• 8-bit general register extensions (REX):SPL is 4,BPL is 5,SIL is 6,DIL is 7,R8B is 8,
R9B is 9,R10B is 10,R11B is 11,R12B is 12,R13B is 13,R14B is 14 andR15B is 15.

• 16-bit general registers:AX is 0,CXis 1,DXis 2,BX is 3,SP is 4,BP is 5,SI is 6, andDI
is 7.

• 16-bit general register extensions (REX):R8Wis 8, R9Wis 9, R10w is 10,R11Wis 11,
R12Wis 12,R13Wis 13,R14Wis 14 andR15Wis 15.

• 32-bit general registers:EAXis 0,ECXis 1,EDXis 2,EBXis 3,ESPis 4,EBPis 5,ESI
is 6, andEDI is 7.

• 32-bit general register extensions (REX):R8D is 8, R9D is 9, R10D is 10,R11D is 11,
R12D is 12,R13D is 13,R14D is 14 andR15D is 15.

• 64-bit general register extensions (REX):RAXis 0,RCXis 1,RDXis 2,RBXis 3,RSPis
4, RBPis 5,RSI is 6,RDI is 7,R8 is 8,R9 is 9,R10 is 10,R11 is 11,R12 is 12,R13 is

19

13,R14 is 14 andR15 is 15.

• Segment registers:ES is 0,CSis 1,SS is 2,DSis 3,FS is 4, andGSis 5.

• Floating-point registers:ST0 is 0,ST1 is 1,ST2 is 2,ST3 is 3,ST4 is 4,ST5 is 5,ST6
is 6, andST7 is 7.

• 64-bit MMX registers:MM0is 0,MM1is 1,MM2is 2,MM3is 3,MM4is 4,MM5is 5,MM6is
6, andMM7is 7.

• 128-bit XMM (SSE) registers:XMM0is 0, XMM1is 1, XMM2is 2, XMM3is 3, XMM4is 4,
XMM5is 5,XMM6is 6 andXMM7is 7.

• 128-bit XMM (SSE) register extensions (REX):XMM8is 8, XMM9is 9, XMM10is 10,
XMM11is 11,XMM12is 12,XMM13is 13,XMM14is 14 andXMM15is 15.

• Control registers:CR0is 0,CR2is 2,CR3is 3, andCR4is 4.

• Control register extensions:CR8is 8.

• Debug registers:DR0is 0,DR1is 1,DR2is 2,DR3is 3,DR6is 6, andDR7is 7.

• Test registers:TR3 is 3,TR4 is 4,TR5 is 5,TR6 is 6, andTR7 is 7.

(Note that wherever a register name contains a number, that number is also the register value
for that register.)

A.2.2 Condition Codes

The available condition codes are given here, along with their numeric representations as part
of opcodes. Many of these condition codes have synonyms, so several will be listed at a time.

In the following descriptions, the word ‘either’, when applied to two possible trigger conditions,
is used to mean ‘either or both’. If ‘either but not both’ is meant, the phrase ‘exactly one of’ is
used.

• O is 0 (trigger if the overflow flag is set);NOis 1.

• B, CandNAEare 2 (trigger if the carry flag is set);AE, NBandNCare 3.

• E andZ are 4 (trigger if the zero flag is set);NEandNZare 5.

• BEandNAare 6 (trigger if either of the carry or zero flags is set);A andNBEare 7.

• S is 8 (trigger if the sign flag is set);NSis 9.

• P andPEare 10 (trigger if the parity flag is set);NPandPOare 11.

• L andNGEare 12 (trigger if exactly one of the sign and overflow flags is set);GEandNL
are 13.

• LE andNGare 14 (trigger if either the zero flag is set, or exactly one of the sign and overflow
flags is set);GandNLEare 15.

Note that in all cases, the sense of a condition code may be reversed by changing the low bit of
the numeric representation.

20

For details of when an instruction sets each of the status flags, see the individual instruction,
plus the Status Flags reference in section A.2.4

A.2.3 SSE Condition Predicates

The condition predicates for SSE comparison instructions are the codes used as part of the
opcode, to determine what form of comparison is being carried out. In each case, the imm8
value is the final byte of the opcode encoding, and the predicate is the code used as part of
the mnemonic for the instruction (equivalent to the "cc" in an integer instruction that used a
condition code). The instructions that use this will give details of what the various mnemonics
are, this table is used to help you work out details of what is happening.

Predi- imm8 Description Relation where: Emula- Result QNaN
 cate Encod- A Is 1st Operand tion if NaN Signal
 ing B Is 2nd Operand Operand Invalid

EQ 000B equal A = B False No

LT 001B less-than A < B False Yes

LE 010B less-than- A <= B False Yes
 or-equal

--- ---- greater A > B Swap False Yes
 than Operands,
 Use LT

--- ---- greater- A >= B Swap False Yes
 than-or-equal Operands,
 Use LE

UNORD 011B unordered A, B = Unordered True No

NEQ 100B not-equal A != B True No

NLT 101B not-less- NOT(A < B) True Yes
 than

NLE 110B not-less- NOT(A <= B) True Yes
 than-or-
 equal

--- ---- not-greater NOT(A > B) Swap True Yes
 than Operands,
 Use NLT

--- ---- not-greater NOT(A >= B) Swap True Yes
 than- Operands,
 or-equal Use NLE

21

ORD 111B ordered A , B = Ordered False No

The unordered relationship is true when at least one of the two values being compared is a NaN
or in an unsupported format.

Note that the comparisons which are listed as not having a predicate or encoding can only be
achieved through software emulation, as described in the "emulation" column. Note in particular
that an instruction such asgreater-than is not the same asNLE, as, unlike with theCMP
instruction, it has to take into account the possibility of one operand containing a NaN or an
unsupported numeric format.

A.2.4 Status Flags

The status flags provide some information about the result of the arithmetic instructions. This
information can be used by conditional instructions (such asJcc andCMOVcc) as well as by
some of the other instructions (such asADCandINTO).

There are 6 status flags:

CF - Carry flag.

Set if an arithmetic operation generates a carry or a borrow out of the most-significant bit of
the result; cleared otherwise. This flag indicates an overflow condition for unsigned-integer
arithmetic. It is also used in multiple-precision arithmetic.

PF - Parity flag.

Set if the least-significant byte of the result contains an even number of 1 bits; cleared otherwise.

AF - Adjust flag.

Set if an arithmetic operation generates a carry or a borrow out of bit 3 of the result; cleared
otherwise. This flag is used in binary-coded decimal (BCD) arithmetic.

ZF - Zero flag.

Set if the result is zero; cleared otherwise.

SF - Sign flag.

Set equal to the most-significant bit of the result, which is the sign bit of a signed integer. (0
indicates a positive value and 1 indicates a negative value.)

OF - Overflow flag.

Set if the integer result is too large a positive number or too small a negative number (excluding
the sign-bit) to fit in the destination operand; cleared otherwise. This flag indicates an overflow
condition for signed-integer (two's complement) arithmetic.

A.2.5 Control Flags

Control Flags control aspects of the CPU's operation. In the 16-bit FLAGS register there are 3
such flags supported on all CPUs down to the 8086. They are:

22

A.2.5.1 IF - Interrupt flag

If set, enables hardware interrupts (IRQs) to be serviced by the CPU. Note that a MOV or POP
to SS (see section A.5.156 and section A.5.244) disables hardware interrupt servicing and Trace
flag tracing until after the next instruction, to allow atomic setting of both SS and SP at the same
time. (There is a bug that makes this interrupt lockout fail on early 8086/8088 CPUs, which is
why 8086-compatible code that sets SS and SP usually also clears the Interrupt flag explicitly
first.)

A.2.5.2 DF - Direction flag

If set (called DN ‘Down’), string operations such as MOVSx (section A.5.178) decrement their
index registers, (E)SI and/or (E)DI. If clear (called UP), which is the usual default state, the
string operations increment their index registers.

A.2.5.3 TF - Trace flag

If set, the CPU will invoke the Trace interrupt (interrupt 1) after the next instruction. There are
a few special cases:

• Other interrupt invocations ignore the prior Trace flag status. That is, interrupts are not
traced.

• After an interrupt invocation, the IRET (see section A.5.127) restores TF=1, but the Trace
interrupt is then only called after another instruction. That is, the Trace interrupt ‘fires too
late’.

• When interrupt lockout due to MOV or POP to SS is in effect, no Trace interrupt is invoked.

• When a repeated string operation is invoked, at most one iteration is executed. (E)IP is reset
in case more iterations are to be executed.

If (E)CX was greater than 1, and (for CMPSx and SCASx) after the first comparison the
Zero flag is set or clear so as to repeat the operation, the (E)IP address is reset to point to
the first prefix opcode and then a Trace interrupt is invoked.

When (E)CX was 1 prior to the instruction, or the Zero flag after the comparison indicates
to break out of the repetition, then one iteration is executed, (E)IP is not reset, and a Trace
interrupt is invoked.

When (E)CX was 0 prior to the instruction, then no iteration is executed, but (E)IP is still
incremented to point after the instruction, and a Trace interrupt is invoked.

A.2.6 Effective Address Encoding: ModR/M and SIB

An effective address is encoded in up to three parts: a ModR/M byte, an optional SIB byte, and
an optional byte, word or doubleword displacement field.

The ModR/M byte consists of three fields: themod field, ranging from 0 to 3, in the upper
two bits of the byte, ther/m field, ranging from 0 to 7, in the lower three bits, and the spare
(register) field in the middle (bit 3 to bit 5). The spare field is not relevant to the effective address
being encoded, and either contains an extension to the instruction opcode or the register value
of another operand.

23

A.2.6.1 ModR/M encoding a register

The ModR/M system can be used to encode a direct register reference rather than a memory
access. This is always done by setting themodfield to 3 and ther/m field to the register value
of the register in question (it must be a general-purpose register, and the size of the register must
already be implicit in the encoding of the rest of the instruction). In this case, the SIB byte and
displacement field are both absent.

A.2.6.2 Memory a16 ModR/M encoding

In 16-bit addressing mode (eitherBITS 16 with no67 prefix, orBITS 32 with a67 prefix),
the SIB byte is never used. The general rules formod andr/m (there is an exception, given
below) are:

• Themodfield gives the length of the displacement field: 0 means no displacement, 1 means
one byte, and 2 means two bytes.

• The r/m field encodes the combination of registers to be added to the displacement to
give the accessed address: 0 meansBX+SI , 1 meansBX+DI, 2 meansBP+SI , 3 means
BP+DI, 4 meansSI only, 5 meansDI only, 6 meansBPonly, and 7 meansBXonly.

However, there is a special case:

• If mod is 0 andr/m is 6, the effective address encoded is not[BP] as the above rules
would suggest, but instead[disp16] : the displacement field is present and is two bytes
long, and no registers are added to the displacement.

Therefore the effective address[BP] cannot be encoded as efficiently as[BX] ; so if you code
[BP] in a program, NASM adds a notional 8-bit zero displacement, and setsmod to 1,r/m to
6, and the one-byte displacement field to 0.

If BP is used in an address then the default segment register isSS. Otherwise, it isDS.

A.2.6.3 Memory a32 ModR/M and SIB encoding

In 32-bit addressing mode (eitherBITS 16 with a67 prefix, orBITS 32 with no67 prefix)
the general rules (again, there are exceptions) formodandr/m are:

• Themodfield gives the length of the displacement field: 0 means no displacement, 1 means
one byte, and 2 means four bytes.

• If only one register is to be added to the displacement, and it is notESP, ther/m field gives
its register value, and the SIB byte is absent. If ther/m field is 4 (which would encode
ESP), the SIB byte is present and gives the combination and scaling of registers to be added
to the displacement.

If the SIB byte is present, it describes the combination of registers (an optional base register, and
an optional index register scaled by multiplication by 1, 2, 4 or 8) to be added to the displacement.
The SIB byte is divided into thescale field, in the top two bits, theindex field in the next
three, and thebase field in the bottom three. The general rules are:

• Thebase field encodes the register value of the base register.

• The index field encodes the register value of the index register, unless it is 4, in which
case no index register is used (soESPcannot be used as an index register). If a 4 is encoded

24

then thescale field is ignored.

• Thescale field encodes the multiplier by which the index register is scaled before adding
it to the base and displacement: 0 encodes a multiplier of 1, 1 encodes 2, 2 encodes 4 and
3 encodes 8.

The exceptions to the 32-bit encoding rules are:

• If mod is 0 andr/m is 5, the effective address encoded is not[EBP] as the above rules
would suggest, but instead[disp32] : the displacement field is present and is four bytes
long, and no registers are added to the displacement.

• If mod is 0, r/m is 4 (meaning the SIB byte is present) andbase is 5, the effective
address encoded is not[EBP+index] as the above rules would suggest, but instead
[disp32+index] : the displacement field is present and is four bytes long, and there is
no base register (but the index register is still processed in the normal way).

• Note that if the prior exception applies, then theindex register field can also be encoded
as 4. This combines the two special cases, resulting in a longer encoding of[disp32]
without any registers. (This longer encoding differs only in a 64-bit code segment from the
shortmod=0 r/m=5 encoding of[disp32] .)

If EBPor ESPis used as the base register in an address then the default segment register isSS.
Otherwise, it isDS. (The use of these registers corresponds tor/m = 5 orbase = 5 or 4, except
for the special cases withmod= 0.)

A.2.7 Register Extensions: The REX Prefix

The Register Extensions, or REX for short, prefix is the means of accessing extended registers
on the x86-64 architecture. REX is considered an instruction prefix, but is required to be after all
other prefixes and thus immediately before the first instruction opcode itself. So overall, REX
can be thought of as an "Opcode Prefix" instead. The REX prefix itself is indicated by a value
of 0x4X, where X is one of 16 different combinations of the actual REX flags.

The REX prefix flags consist of four 1-bit extensions fields. These flags are found in the lower
nibble of the actual REX prefix opcode. Below is the list of REX prefix flags, from high bit to
low bit.

REX.W: When set, this flag indicates the use of a 64-bit operand, as opposed to the default of
using 32-bit operands as found in 32-bit Protected Mode.

REX.R: When set, this flag extends thereg (spare) field of the ModR/M byte. Overall, this
raises the amount of addressable registers in this field from 8 to 16.

REX.X: When set, this flag extends theindex field of theSIB byte. Overall, this raises the
amount of addressable registers in this field from 8 to 16.

REX.B: When set, this flag extends ther/m field of the ModR/M byte. This flag can also
represent an extension to the opcode register (/r) field. The determination of which is used
varies depending on which instruction is used. Overall, this raises the amount of addressable
registers in these fields from 8 to 16.

Internal use of the REX prefix by the processor is consistent, yet non-trivial. Most instructions
use the REX prefix as indicated by the above flags. Some instructions require the REX prefix to

25

be present even if the flags are empty. Some instructions default to a 64-bit operand and require
the REX prefix only for actual register extensions, and thus ignores theREX.Wfield completely.

At any rate, NASM is designed to handle, and fully supports, the REX prefix internally. Please
read the appropriate processor documentation for further information on the REX prefix.

You may have noticed that opcodes 0x40 through 0x4F are actually opcodes for the INC/DEC
instructions for each General Purpose Register. This is, of course, correct... for legacy x86. While
in long mode, opcodes 0x40 through 0x4F are reserved for use as the REX prefix. The other
opcode forms of the INC/DEC instructions are used instead.

A.3 Key to Instruction Flags
Given along with each instruction in this appendix is a set of flags, denoting the type of the
instruction. The types are as follows:

• 8086 , 186 , 286 , 386 , 486 , PENTandP6 denote the lowest processor type that supports
the instruction. Most instructions run on all processors above the given type; those that
do not are documented. The Pentium II contains no additional instructions beyond the P6
(Pentium Pro); from the point of view of its instruction set, it can be thought of as a P6
with MMX capability.

• 3DNOWindicates that the instruction is a 3DNow! one, and will run on the AMD K6-2 and
later processors. ATHLON extensions to the 3DNow! instruction set are documented as
such.

• CYRIX indicates that the instruction is specific to Cyrix processors, for example the extra
MMX instructions in the Cyrix extended MMX instruction set.

• FPU indicates that the instruction is a floating-point one, and will only run on machines
with a coprocessor (automatically including 486DX, Pentium and above).

• KATMAIindicates that the instruction was introduced as part of the Katmai New Instruction
set. These instructions are available on the Pentium III and later processors. Those which
are not specifically SSE instructions are also available on the AMD Athlon.

• MMXindicates that the instruction is an MMX one, and will run on MMX-capable Pentium
processors and the Pentium II.

• PRIV indicates that the instruction is a protected-mode management instruction. Many of
these may only be used in protected mode, or only at privilege level zero.

• SSEandSSE2 indicate that the instruction is a Streaming SIMD Extension instruction.
These instructions operate on multiple values in a single operation. SSE was introduced
with the Pentium III and SSE2 was introduced with the Pentium 4.

• UNDOCindicates that the instruction is an undocumented one, and not part of the official
Intel Architecture; it may or may not be supported on any given machine.

• WILLAMETTEindicates that the instruction was introduced as part of the new instruction
set in the Pentium 4 and Intel Xeon processors. These instructions are also known as SSE2
instructions.

• X64 indicates that the instruction was introduced as part of the new instruction set in the
x86-64 architecture extension, commonly referred to as x64, AMD64 or EM64T.

26

A.4 Emulator notes

A.4.1 Common corner cases

• POPto CS is invalid, and used by 286+ CPUs as prefix byte for two-byte instructions. Some
8086s may actually implement it however. It is unclear how this interacts with the prefetch
queue, which is known to be purged by everyJMP, CALL, interrupt, or return instruction.

• LEA has to encode a memory reference as source operand, and thus not a register.

• MOVto and from segregs can encode invalid non-existent segment registers beyond DS, or
(on a 386+) beyond GS.

• MOVto a segreg mustn't encode CS as destination. LikePOPto CS, the prefetch queue
behaviour is uncertain.

• HLT should cause the machine to halt, ideally until the next hardware interrupt occurs. It
may however simply cause the machine to sleep or give up a timeslice in a multitasker.
Failing even that is in error.

• SHL and other shift and rotate instructions mask the shift count (either from CL or the
immediate operand) with 31 on 186+ machines, except NEC V20/V30. The latter, and
8088/8086, use the entire shift count.

• On the 8088/8086, the divide by zero interrupt points behind the instruction that caused
the exception. Otherwise, it points at the instruction.

• AADandAAMaccept immediate bytes other than 10 on some machines, but not on the NEC
V20/V30.

• Interrupt 6 (Invalid opcode) didn't exist on the 8088/8086. Unsupported instructions may
behave as one- or two-byte no-ops or otherwise oddly.

• Interrupt lockout afterMOVor POPto SS is described in the Control Flags description of
the Interrupt Flag, section A.2.5.1.

• Proper repeated string operations tracing is described in the Control Flags description of
the Trace Flag, section A.2.5.3.

A.4.2 Emulator call encodings

• NTVDM usesC4 C4 (LES with a register source) followed by one or two callback
identifier bytes.

• DOSBox usesFE 38 (invalid encoding with /7) followed by a callback identifier word.

• dosemu2 usesHLT and dispatches based on the address of theHLT.

• 8086tiny uses0F followed by one identifier byte, currently in the range00 to 04 .

A.5 x86 Instruction Set

A.5.1 AAA, AAS, AAM, AAD: ASCII Adjustments

AAA ; 37 [8086]

27

AAS ; 3F [8086]

AAD ; D5 0A [8086]
AAD imm8 ; D5 ib [8086]

AAM ; D4 0A [8086]
AAM imm8 ; D4 ib [8086]

These instructions are used in conjunction with the add, subtract, multiply and divide
instructions to perform binary-coded decimal arithmetic inunpacked(one BCD digit per byte -
easy to translate to and fromASCII , hence the instruction names) form. There are also packed
BCD instructionsDAAandDAS: see section A.5.57.

• AAA(ASCII Adjust After Addition) should be used after a one-byteADDinstruction whose
destination was theAL register: by means of examining the value in the low nibble ofAL
and also the auxiliary carry flagAF, it determines whether the addition has overflowed, and
adjusts it (and sets the carry flag) if so. You can add long BCD strings together by doing
ADD/AAAon the low digits, then doingADC/AAAon each subsequent digit.

• AAS(ASCII Adjust AL After Subtraction) works similarly toAAA, but is for use afterSUB
instructions rather thanADD.

• AAM(ASCII Adjust AX After Multiply) is for use after you have multiplied two decimal
digits together and left the result inAL: it dividesAL by ten and stores the quotient inAH,
leaving the remainder inAL. The divisor 10 can be changed by specifying an operand to
the instruction: a particularly handy use of this isAAM 16, causing the two nibbles inAL
to be separated intoAHandAL. Note that the divisor immediate byte is ignored by some
implementations such as the NEC V20/V30, which always use 10 as divisor.

• AAD (ASCII Adjust AX Before Division) performs the inverse operation toAAM: it
multipliesAHby ten, adds it toAL, and setsAH to zero. Again, the multiplier 10 can be
changed on some implementations.

A.5.2 ADC: Add with Carry

ADC r/m8,reg8 ; 10 /r [8086]
ADC r/m16,reg16 ; o16 11 /r [8086]
ADC r/m32,reg32 ; o32 11 /r [386]

ADC reg8,r/m8 ; 12 /r [8086]
ADC reg16,r/m16 ; o16 13 /r [8086]
ADC reg32,r/m32 ; o32 13 /r [386]

ADC r/m8,imm8 ; 80 /2 ib [8086]
ADC r/m16,imm16 ; o16 81 /2 iw [8086]
ADC r/m32,imm32 ; o32 81 /2 id [386]

ADC r/m16,imm8 ; o16 83 /2 ib [8086]
ADC r/m32,imm8 ; o32 83 /2 ib [386]

ADC AL,imm8 ; 14 ib [8086]
ADC AX,imm16 ; o16 15 iw [8086]

28

ADC EAX,imm32 ; o32 15 id [386]

ADCperforms integer addition: it adds its two operands together, plus the value of the carry flag,
and leaves the result in its destination (first) operand. The destination operand can be a register
or a memory location. The source operand can be a register, a memory location or an immediate
value.

The flags are set according to the result of the operation: in particular, the carry flag is affected
and can be used by a subsequentADCinstruction.

In the forms with an 8-bit immediate second operand and a longer first operand, the second
operand is considered to be signed, and is sign-extended to the length of the first operand. The
BYTEqualifier can be used to force NASM to generate this form of the instruction. Recent
versions of NASM automatically optimise to this form if the immediate operand's value is known
during the assembling of that instruction, and fits in the range of a signed byte. The longer variant
can then still be forced using theSTRICT WORDor STRICT DWORDqualifier.

To add two numbers without also adding the contents of the carry flag, useADD(section A.5.3).

A.5.3 ADD: Add Integers

ADD r/m8,reg8 ; 00 /r [8086]
ADD r/m16,reg16 ; o16 01 /r [8086]
ADD r/m32,reg32 ; o32 01 /r [386]

ADD reg8,r/m8 ; 02 /r [8086]
ADD reg16,r/m16 ; o16 03 /r [8086]
ADD reg32,r/m32 ; o32 03 /r [386]

ADD r/m8,imm8 ; 80 /7 ib [8086]
ADD r/m16,imm16 ; o16 81 /7 iw [8086]
ADD r/m32,imm32 ; o32 81 /7 id [386]

ADD r/m16,imm8 ; o16 83 /7 ib [8086]
ADD r/m32,imm8 ; o32 83 /7 ib [386]

ADD AL,imm8 ; 04 ib [8086]
ADD AX,imm16 ; o16 05 iw [8086]
ADD EAX,imm32 ; o32 05 id [386]

ADDperforms integer addition: it adds its two operands together, and leaves the result in its
destination (first) operand. The destination operand can be a register or a memory location. The
source operand can be a register, a memory location or an immediate value.

The flags are set according to the result of the operation: in particular, the carry flag is affected
and can be used by a subsequentADCinstruction.

In the forms with an 8-bit immediate second operand and a longer first operand, the second
operand is considered to be signed, and is sign-extended to the length of the first operand. The
BYTEqualifier can be used to force NASM to generate this form of the instruction. Recent
versions of NASM automatically optimise to this form if the immediate operand's value is known
during the assembling of that instruction, and fits in the range of a signed byte. The longer variant
can then still be forced using theSTRICT WORDor STRICT DWORDqualifier.

29

A.5.4 ADDPD: ADD Packed Double-Precision FP Values

ADDPD xmm1,xmm2/mem128 ; 66 0F 58 /r [WILLAMETTE,SSE2]

ADDPDperforms addition on each of two packed double-precision FP value pairs.

 dst[0-63] := dst[0-63] + src[0-63],
 dst[64-127] := dst[64-127] + src[64-127].

The destination is anXMMregister. The source operand can be either anXMMregister or a 128-
bit memory location.

A.5.5 ADDPS: ADD Packed Single-Precision FP Values

ADDPS xmm1,xmm2/mem128 ; 0F 58 /r [KATMAI,SSE]

ADDPSperforms addition on each of four packed single-precision FP value pairs

 dst[0-31] := dst[0-31] + src[0-31],
 dst[32-63] := dst[32-63] + src[32-63],
 dst[64-95] := dst[64-95] + src[64-95],
 dst[96-127] := dst[96-127] + src[96-127].

The destination is anXMMregister. The source operand can be either anXMMregister or a 128-
bit memory location.

A.5.6 ADDSD: ADD Scalar Double-Precision FP Values

ADDSD xmm1,xmm2/mem64 ; F2 0F 58 /r [KATMAI,SSE]

ADDSDadds the low double-precision FP values from the source and destination operands and
stores the double-precision FP result in the destination operand.

 dst[0-63] := dst[0-63] + src[0-63],
 dst[64-127] remains unchanged.

The destination is anXMMregister. The source operand can be either anXMMregister or a 64-
bit memory location.

A.5.7 ADDSS: ADD Scalar Single-Precision FP Values

ADDSS xmm1,xmm2/mem32 ; F3 0F 58 /r [WILLAMETTE,SSE2]

ADDSSadds the low single-precision FP values from the source and destination operands and
stores the single-precision FP result in the destination operand.

 dst[0-31] := dst[0-31] + src[0-31],
 dst[32-127] remains unchanged.

The destination is anXMMregister. The source operand can be either anXMMregister or a 32-
bit memory location.

A.5.8 AND: Bitwise AND

AND r/m8,reg8 ; 20 /r [8086]

30

AND r/m16,reg16 ; o16 21 /r [8086]
AND r/m32,reg32 ; o32 21 /r [386]

AND reg8,r/m8 ; 22 /r [8086]
AND reg16,r/m16 ; o16 23 /r [8086]
AND reg32,r/m32 ; o32 23 /r [386]

AND r/m8,imm8 ; 80 /4 ib [8086]
AND r/m16,imm16 ; o16 81 /4 iw [8086]
AND r/m32,imm32 ; o32 81 /4 id [386]

AND r/m16,imm8 ; o16 83 /4 ib [8086]
AND r/m32,imm8 ; o32 83 /4 ib [386]

AND AL,imm8 ; 24 ib [8086]
AND AX,imm16 ; o16 25 iw [8086]
AND EAX,imm32 ; o32 25 id [386]

ANDperforms a bitwise AND operation between its two operands (i.e. each bit of the result is
1 if and only if the corresponding bits of the two inputs were both 1), and stores the result in
the destination (first) operand. The destination operand can be a register or a memory location.
The source operand can be a register, a memory location or an immediate value.

In the forms with an 8-bit immediate second operand and a longer first operand, the second
operand is considered to be signed, and is sign-extended to the length of the first operand. The
BYTEqualifier can be used to force NASM to generate this form of the instruction. Recent
versions of NASM automatically optimise to this form if the immediate operand's value is known
during the assembling of that instruction, and fits in the range of a signed byte. The longer variant
can then still be forced using theSTRICT WORDor STRICT DWORDqualifier.

The Carry Flag is cleared byAND. The Zero Flag is set according to whether the result is zero.

TheTEST (see section A.5.317) instruction performs the same operation asANDbut without
writing to the destination operand. That is, it only reads the operands and writes the status flags.

TheMMXinstructionPAND(see section A.5.202) performs the same operation on the 64-bitMMX
registers.

A.5.9 ANDNPD: Bitwise Logical AND NOT of Packed Double-Precision FP
Values

ANDNPD xmm1,xmm2/mem128 ; 66 0F 55 /r [WILLAMETTE,SSE2]

ANDNPDinverts the bits of the two double-precision floating-point values in the destination
register, and then performs a logical AND between the two double-precision floating-point
values in the source operand and the temporary inverted result, storing the result in the
destination register.

 dst[0-63] := src[0-63] AND NOT dst[0-63],
 dst[64-127] := src[64-127] AND NOT dst[64-127].

The destination is anXMMregister. The source operand can be either anXMMregister or a 128-
bit memory location.

31

A.5.10 ANDNPS: Bitwise Logical AND NOT of Packed Single-Precision FP
Values

ANDNPS xmm1,xmm2/mem128 ; 0F 55 /r [KATMAI,SSE]

ANDNPSinverts the bits of the four single-precision floating-point values in the destination
register, and then performs a logical AND between the four single-precision floating-point
values in the source operand and the temporary inverted result, storing the result in the
destination register.

 dst[0-31] := src[0-31] AND NOT dst[0-31],
 dst[32-63] := src[32-63] AND NOT dst[32-63],
 dst[64-95] := src[64-95] AND NOT dst[64-95],
 dst[96-127] := src[96-127] AND NOT dst[96-127].

The destination is anXMMregister. The source operand can be either anXMMregister or a 128-
bit memory location.

A.5.11 ANDPD: Bitwise Logical AND For Single FP

ANDPD xmm1,xmm2/mem128 ; 66 0F 54 /r [WILLAMETTE,SSE2]

ANDPDperforms a bitwise logical AND of the two double-precision floating point values in the
source and destination operand, and stores the result in the destination register.

 dst[0-63] := src[0-63] AND dst[0-63],
 dst[64-127] := src[64-127] AND dst[64-127].

The destination is anXMMregister. The source operand can be either anXMMregister or a 128-
bit memory location.

A.5.12 ANDPS: Bitwise Logical AND For Single FP

ANDPS xmm1,xmm2/mem128 ; 0F 54 /r [KATMAI,SSE]

ANDPSperforms a bitwise logical AND of the four single-precision floating point values in the
source and destination operand, and stores the result in the destination register.

 dst[0-31] := src[0-31] AND dst[0-31],
 dst[32-63] := src[32-63] AND dst[32-63],
 dst[64-95] := src[64-95] AND dst[64-95],
 dst[96-127] := src[96-127] AND dst[96-127].

The destination is anXMMregister. The source operand can be either anXMMregister or a 128-
bit memory location.

A.5.13 ARPL: Adjust RPL Field of Selector

ARPL r/m16,reg16 ; 63 /r [286,PRIV]

ARPLexpects its two word operands to be segment selectors. It adjusts theRPL (requested
privilege level - stored in the bottom two bits of the selector) field of the destination (first)
operand to ensure that it is no less (i.e. no more privileged than) theRPL field of the source
operand. The zero flag is set if and only if a change had to be made.

32

A.5.14 BOUND: Check Array Index against Bounds

BOUND reg16,mem ; o16 62 /r [186]
BOUND reg32,mem ; o32 62 /r [386]

BOUNDexpects its second operand to point to an area of memory containing two signed values
of the same size as its first operand (i.e. two words for the 16-bit form; two doublewords for the
32-bit form). It performs two signed comparisons: if the value in the register passed as its first
operand is less than the first of the in-memory values, or is greater than or equal to the second,
it throws aBRexception. Otherwise, it does nothing.

A.5.15 BSF, BSR: Bit Scan

BSF reg16,r/m16 ; o16 0F BC /r [386]
BSF reg32,r/m32 ; o32 0F BC /r [386]

BSR reg16,r/m16 ; o16 0F BD /r [386]
BSR reg32,r/m32 ; o32 0F BD /r [386]

• BSFsearches for the least significant set bit in its source (second) operand, and if it finds
one, stores the index in its destination (first) operand. If no set bit is found, the contents of
the destination operand are undefined. If the source operand is zero, the zero flag is set.

• BSRperforms the same function, but searches from the top instead, so it finds the most
significant set bit.

Bit indices are from 0 (least significant) to 15 or 31 (most significant). The destination operand
can only be a register. The source operand can be a register or a memory location.

A.5.16 BSWAP: Byte Swap

BSWAP reg32 ; o32 0F C8+r [486]

BSWAPswaps the order of the four bytes of a 32-bit register: bits 0-7 exchange places with bits
24-31, and bits 8-15 swap with bits 16-23. There is no explicit 16-bit equivalent: to byte-swap
AX, BX, CXor DX, XCHGcan be used. WhenBSWAPis used with a 16-bit register, the result is
undefined.

A.5.17 BT, BTC, BTR, BTS: Bit Test

BT r/m16,reg16 ; o16 0F A3 /r [386]
BT r/m32,reg32 ; o32 0F A3 /r [386]
BT r/m16,imm8 ; o16 0F BA /4 ib [386]
BT r/m32,imm8 ; o32 0F BA /4 ib [386]

BTC r/m16,reg16 ; o16 0F BB /r [386]
BTC r/m32,reg32 ; o32 0F BB /r [386]
BTC r/m16,imm8 ; o16 0F BA /7 ib [386]
BTC r/m32,imm8 ; o32 0F BA /7 ib [386]

BTR r/m16,reg16 ; o16 0F B3 /r [386]
BTR r/m32,reg32 ; o32 0F B3 /r [386]
BTR r/m16,imm8 ; o16 0F BA /6 ib [386]

33

BTR r/m32,imm8 ; o32 0F BA /6 ib [386]

BTS r/m16,reg16 ; o16 0F AB /r [386]
BTS r/m32,reg32 ; o32 0F AB /r [386]
BTS r/m16,imm8 ; o16 0F BA /5 ib [386]
BTS r/m32,imm8 ; o32 0F BA /5 ib [386]

These instructions all test one bit of their first operand, whose index is given by the second
operand, and store the value of that bit into the carry flag. Bit indices are from 0 (least significant)
to 15 or 31 (most significant).

In addition to storing the original value of the bit into the carry flag,BTRalso resets (clears) the
bit in the operand itself.BTSsets the bit, andBTCcomplements the bit.BT does not modify its
operands.

The destination can be a register or a memory location. The source can be a register or an
immediate value.

If the destination operand is a register, the bit offset should be in the range 0-15 (for 16-bit
operands) or 0-31 (for 32-bit operands). An immediate value outside these ranges will be taken
modulo 16/32 by the processor.

If the destination operand is a memory location, then an immediate bit offset follows the same
rules as for a register. If the bit offset is in a register, then it can be anything within the signed
range of the register used (ie, for a 32-bit operand, it can be (-2^31) to (2^31 - 1)).

A.5.18 CALL: Call Subroutine

CALL imm ; E8 rw/rd [8086]
CALL imm:imm16 ; o16 9A iw iw [8086]
CALL imm:imm32 ; o32 9A id iw [386]
CALL FAR mem16 ; o16 FF /3 [8086]
CALL FAR mem32 ; o32 FF /3 [386]
CALL r/m16 ; o16 FF /2 [8086]
CALL r/m32 ; o32 FF /2 [386]

CALLcalls a subroutine, by means of pushing the current instruction pointer (IP) and optionally
CSas well on the stack, and then jumping to a given address.

CSis pushed as well asIP if and only if the call is a far call, i.e. a destination segment address
is specified in the instruction. The forms involving two colon-separated arguments are far calls;
so are theCALL FAR memforms.

The immediate near call takes one of two forms (CALL imm16/imm32), determined by the
current segment size limit. For 16-bit operands, you would useCALL 0x1234 , and for 32-bit
operands you would useCALL 0x12345678 . The value passed as an operand is a relative
offset.

You can choose between the two immediate far call forms (CALL imm:imm) by
the use of the WORDand DWORDkeywords: CALL WORD 0x1234:0x5678 or
CALL DWORD 0x1234:0x56789abc .

TheCALL FAR memforms execute a far call by loading the destination address out of memory.
The address loaded consists of 16 or 32 bits of offset (depending on the operand size), and

34

16 bits of segment. The operand size may be overridden usingCALL WORD FAR memor
CALL DWORD FAR mem.

TheCALL r/m forms execute a near call (within the same segment), loading the destination
address out of memory or out of a register. The keywordNEARmay be specified, for
clarity, in these forms, but is not necessary. Again, operand size can be overridden using
CALL WORD memor CALL DWORD mem.

As a convenience, NASM does not require you to call a far procedure symbol by coding
the cumbersomeCALL SEG routine:routine , but instead allows the easier synonym
CALL FAR routine .

A.5.19 CBW, CWD, CDQ, CWDE: Sign Extensions

CBW ; o16 98 [8086]
CWDE ; o32 98 [386]

CWD ; o16 99 [8086]
CDQ ; o32 99 [386]

All these instructions sign-extend a short value into a longer one, by replicating the top bit of
the original value to fill the extended one.

CBWextendsAL into AX by repeating the top bit ofAL in every bit ofAH. CWDEextendsAX
into EAX. CWDextendsAX into DX:AX by repeating the top bit ofAX throughoutDX, andCDQ
extendsEAXinto EDX:EAX.

A.5.20 CLC, CLD, CLI , CLTS: Clear Flags

CLC ; F8 [8086]
CLD ; FC [8086]
CLI ; FA [8086]
CLTS ; 0F 06 [286,PRIV]

These instructions clear various flags.CLCclears the carry flag;CLDclears the direction flag;
CLI clears the interrupt flag (thus disabling interrupts); andCLTSclears the task-switched (TS)
flag inCR0.

To set the carry, direction, or interrupt flags, use theSTC, STDandSTI instructions (section
A.5.301). To invert the carry flag, useCMC(section A.5.22).

A.5.21 CLFLUSH: Flush Cache Line

CLFLUSH mem ; 0F AE /7 [WILLAMETTE,SSE2]

CLFLUSHinvalidates the cache line that contains the linear address specified by the source
operand from all levels of the processor cache hierarchy (data and instruction). If, at any level of
the cache hierarchy, the line is inconsistent with memory (dirty) it is written to memory before
invalidation. The source operand points to a byte-sized memory location.

AlthoughCLFLUSHis flaggedSSE2and above, it may not be present on all processors which
haveSSE2support, and it may be supported on other processors; theCPUIDinstruction (section
A.5.34) will return a bit which indicates support for theCLFLUSHinstruction.

35

A.5.22 CMC: Complement Carry Flag

CMC ; F5 [8086]

CMCchanges the value of the carry flag: if it was 0, it sets it to 1, and vice versa.

A.5.23 CMOVcc: Conditional Move

CMOVcc reg16,r/m16 ; o16 0F 40+cc /r [P6]
CMOVcc reg32,r/m32 ; o32 0F 40+cc /r [P6]

CMOVmoves its source (second) operand into its destination (first) operand if the given condition
code is satisfied; otherwise it does nothing.

For a list of condition codes, see section A.2.2.

Although theCMOVinstructions are flaggedP6 and above, they may not be supported by all
Pentium Pro processors; theCPUIDinstruction (section A.5.34) will return a bit which indicates
whether conditional moves are supported.

A.5.24 CMP: Compare Integers

CMP r/m8,reg8 ; 38 /r [8086]
CMP r/m16,reg16 ; o16 39 /r [8086]
CMP r/m32,reg32 ; o32 39 /r [386]

CMP reg8,r/m8 ; 3A /r [8086]
CMP reg16,r/m16 ; o16 3B /r [8086]
CMP reg32,r/m32 ; o32 3B /r [386]

CMP r/m8,imm8 ; 80 /7 ib [8086]
CMP r/m16,imm16 ; o16 81 /7 iw [8086]
CMP r/m32,imm32 ; o32 81 /7 id [386]

CMP r/m16,imm8 ; o16 83 /7 ib [8086]
CMP r/m32,imm8 ; o32 83 /7 ib [386]

CMP AL,imm8 ; 3C ib [8086]
CMP AX,imm16 ; o16 3D iw [8086]
CMP EAX,imm32 ; o32 3D id [386]

CMPperforms a ‘mental’ subtraction of its second operand from its first operand, and affects
the flags as if the subtraction had taken place, but does not store the result of the subtraction
anywhere. (For subtraction that does store the result, see section A.5.305.)

In the forms with an 8-bit immediate second operand and a longer first operand, the second
operand is considered to be signed, and is sign-extended to the length of the first operand. The
BYTEqualifier can be used to force NASM to generate this form of the instruction. Recent
versions of NASM automatically optimise to this form if the immediate operand's value is known
during the assembling of that instruction, and fits in the range of a signed byte. The longer variant
can then still be forced using theSTRICT WORDor STRICT DWORDqualifier.

The destination operand can be a register or a memory location. The source can be a register,
memory location or an immediate value of the same size as the destination.

36

A.5.25 CMPccPD: Packed Double-Precision FP Compare

CMPPD xmm1,xmm2/mem128,imm8 ; 66 0F C2 /r ib [WILLAMETTE,SSE2]

CMPEQPD xmm1,xmm2/mem128 ; 66 0F C2 /r 00 [WILLAMETTE,SSE2]
CMPLTPD xmm1,xmm2/mem128 ; 66 0F C2 /r 01 [WILLAMETTE,SSE2]
CMPLEPD xmm1,xmm2/mem128 ; 66 0F C2 /r 02 [WILLAMETTE,SSE2]
CMPUNORDPD xmm1,xmm2/mem128 ; 66 0F C2 /r 03 [WILLAMETTE,SSE2]
CMPNEQPD xmm1,xmm2/mem128 ; 66 0F C2 /r 04 [WILLAMETTE,SSE2]
CMPNLTPD xmm1,xmm2/mem128 ; 66 0F C2 /r 05 [WILLAMETTE,SSE2]
CMPNLEPD xmm1,xmm2/mem128 ; 66 0F C2 /r 06 [WILLAMETTE,SSE2]
CMPORDPD xmm1,xmm2/mem128 ; 66 0F C2 /r 07 [WILLAMETTE,SSE2]

TheCMPccPDinstructions compare the two packed double-precision FP values in the source
and destination operands, and returns the result of the comparison in the destination register. The
result of each comparison is a quadword mask of all 1s (comparison true) or all 0s (comparison
false).

The destination is anXMMregister. The source can be either anXMMregister or a 128-bit memory
location.

The third operand is an 8-bit immediate value, of which the low 3 bits define the type of
comparison. For ease of programming, the 8 two-operand pseudo-instructions are provided,
with the third operand already filled in. TheCondition Predicates are:

EQ 0 Equal
LT 1 Less-than
LE 2 Less-than-or-equal
UNORD 3 Unordered
NE 4 Not-equal
NLT 5 Not-less-than
NLE 6 Not-less-than-or-equal
ORD 7 Ordered

For more details of the comparison predicates, and details of how to emulate the "greater-than"
equivalents, see section A.2.3

A.5.26 CMPccPS: Packed Single-Precision FP Compare

CMPPS xmm1,xmm2/mem128,imm8 ; 0F C2 /r ib [KATMAI,SSE]

CMPEQPS xmm1,xmm2/mem128 ; 0F C2 /r 00 [KATMAI,SSE]
CMPLTPS xmm1,xmm2/mem128 ; 0F C2 /r 01 [KATMAI,SSE]
CMPLEPS xmm1,xmm2/mem128 ; 0F C2 /r 02 [KATMAI,SSE]
CMPUNORDPS xmm1,xmm2/mem128 ; 0F C2 /r 03 [KATMAI,SSE]
CMPNEQPS xmm1,xmm2/mem128 ; 0F C2 /r 04 [KATMAI,SSE]
CMPNLTPS xmm1,xmm2/mem128 ; 0F C2 /r 05 [KATMAI,SSE]
CMPNLEPS xmm1,xmm2/mem128 ; 0F C2 /r 06 [KATMAI,SSE]
CMPORDPS xmm1,xmm2/mem128 ; 0F C2 /r 07 [KATMAI,SSE]

TheCMPccPSinstructions compare the two packed single-precision FP values in the source
and destination operands, and returns the result of the comparison in the destination register. The

37

result of each comparison is a doubleword mask of all 1s (comparison true) or all 0s (comparison
false).

The destination is anXMMregister. The source can be either anXMMregister or a 128-bit memory
location.

The third operand is an 8-bit immediate value, of which the low 3 bits define the type of
comparison. For ease of programming, the 8 two-operand pseudo-instructions are provided,
with the third operand already filled in. TheCondition Predicates are:

EQ 0 Equal
LT 1 Less-than
LE 2 Less-than-or-equal
UNORD 3 Unordered
NE 4 Not-equal
NLT 5 Not-less-than
NLE 6 Not-less-than-or-equal
ORD 7 Ordered

For more details of the comparison predicates, and details of how to emulate the "greater-than"
equivalents, see section A.2.3

A.5.27 CMPSB, CMPSW, CMPSD: Compare Strings

CMPSB ; A6 [8086]
CMPSW ; o16 A7 [8086]
CMPSD ; o32 A7 [386]

CMPSBcompares the byte at[DS:SI] or [DS:ESI] with the byte at[ES:DI] or
[ES:EDI] , and sets the flags accordingly. It then increments or decrements (depending on the
direction flag: increments if the flag is clear, decrements if it is set)SI andDI (or ESI and
EDI).

The registers used areSI andDI if the address size is 16 bits, andESI andEDI if it is 32 bits.
If you need to use an address size not equal to the currentBITS setting, you can use an explicit
a16 or a32 prefix.

The segment register used to load from[SI] or [ESI] can be overridden by using a segment
register name as a prefix (for example,ES CMPSB). The use ofES for the load from[DI] or
[EDI] cannot be overridden.

CMPSWandCMPSDwork in the same way, but they compare a word or a doubleword instead
of a byte, and increment or decrement the addressing registers by 2 or 4 instead of 1.

The REPEandREPNEprefixes (equivalently,REPZandREPNZ) may be used to repeat the
instruction up toCX(orECX- again, the address size chooses which) times until the first unequal
or equal element is found. To NASM,REPis an alias forREPE.

A.5.27.1 Pseudo-code examples

a16 CMPSBwithout segment override and with Direction Flag clear (UP) is equal to

CMP BYTE [SI], BYTE [ES:DI]
LEA SI, [SI + 1]

38

LEA DI, [DI + 1]

a16 REPE CMPSWwithout segment override and with Direction Flag clear (UP) is equal to

JCXZ @FF
@@:
CMP WORD [SI], WORD [ES:DI]
LEA SI, [SI + 2]
LEA DI, [DI + 2]
a16 LOOPE @B
@@:

a32 ES CMPSDwith Direction Flag set (DN) is equal to

CMP DWORD [ES:ESI], DWORD [ES:EDI]
LEA ESI, [ESI - 4]
LEA EDI, [EDI - 4]

A.5.28 CMPccSD: Scalar Double-Precision FP Compare

CMPSD xmm1,xmm2/mem64,imm8 ; F2 0F C2 /r ib [WILLAMETTE,SSE2]

CMPEQSD xmm1,xmm2/mem64 ; F2 0F C2 /r 00 [WILLAMETTE,SSE2]
CMPLTSD xmm1,xmm2/mem64 ; F2 0F C2 /r 01 [WILLAMETTE,SSE2]
CMPLESD xmm1,xmm2/mem64 ; F2 0F C2 /r 02 [WILLAMETTE,SSE2]
CMPUNORDSD xmm1,xmm2/mem64 ; F2 0F C2 /r 03 [WILLAMETTE,SSE2]
CMPNEQSD xmm1,xmm2/mem64 ; F2 0F C2 /r 04 [WILLAMETTE,SSE2]
CMPNLTSD xmm1,xmm2/mem64 ; F2 0F C2 /r 05 [WILLAMETTE,SSE2]
CMPNLESD xmm1,xmm2/mem64 ; F2 0F C2 /r 06 [WILLAMETTE,SSE2]
CMPORDSD xmm1,xmm2/mem64 ; F2 0F C2 /r 07 [WILLAMETTE,SSE2]

TheCMPccSDinstructions compare the low-order double-precision FP values in the source and
destination operands, and returns the result of the comparison in the destination register. The
result of each comparison is a quadword mask of all 1s (comparison true) or all 0s (comparison
false).

The destination is anXMMregister. The source can be either anXMMregister or a 128-bit memory
location.

The third operand is an 8-bit immediate value, of which the low 3 bits define the type of
comparison. For ease of programming, the 8 two-operand pseudo-instructions are provided,
with the third operand already filled in. TheCondition Predicates are:

EQ 0 Equal
LT 1 Less-than
LE 2 Less-than-or-equal
UNORD 3 Unordered
NE 4 Not-equal
NLT 5 Not-less-than
NLE 6 Not-less-than-or-equal
ORD 7 Ordered

For more details of the comparison predicates, and details of how to emulate the "greater-than"
equivalents, see section A.2.3

39

A.5.29 CMPccSS: Scalar Single-Precision FP Compare

CMPSS xmm1,xmm2/mem32,imm8 ; F3 0F C2 /r ib [KATMAI,SSE]

CMPEQSS xmm1,xmm2/mem32 ; F3 0F C2 /r 00 [KATMAI,SSE]
CMPLTSS xmm1,xmm2/mem32 ; F3 0F C2 /r 01 [KATMAI,SSE]
CMPLESS xmm1,xmm2/mem32 ; F3 0F C2 /r 02 [KATMAI,SSE]
CMPUNORDSS xmm1,xmm2/mem32 ; F3 0F C2 /r 03 [KATMAI,SSE]
CMPNEQSS xmm1,xmm2/mem32 ; F3 0F C2 /r 04 [KATMAI,SSE]
CMPNLTSS xmm1,xmm2/mem32 ; F3 0F C2 /r 05 [KATMAI,SSE]
CMPNLESS xmm1,xmm2/mem32 ; F3 0F C2 /r 06 [KATMAI,SSE]
CMPORDSS xmm1,xmm2/mem32 ; F3 0F C2 /r 07 [KATMAI,SSE]

TheCMPccSSinstructions compare the low-order single-precision FP values in the source and
destination operands, and returns the result of the comparison in the destination register. The
result of each comparison is a doubleword mask of all 1s (comparison true) or all 0s (comparison
false).

The destination is anXMMregister. The source can be either anXMMregister or a 128-bit memory
location.

The third operand is an 8-bit immediate value, of which the low 3 bits define the type of
comparison. For ease of programming, the 8 two-operand pseudo-instructions are provided,
with the third operand already filled in. TheCondition Predicates are:

EQ 0 Equal
LT 1 Less-than
LE 2 Less-than-or-equal
UNORD 3 Unordered
NE 4 Not-equal
NLT 5 Not-less-than
NLE 6 Not-less-than-or-equal
ORD 7 Ordered

For more details of the comparison predicates, and details of how to emulate the "greater-than"
equivalents, see section A.2.3

A.5.30 CMPXCHG, CMPXCHG486: Compare and Exchange

CMPXCHG r/m8,reg8 ; 0F B0 /r [PENT]
CMPXCHG r/m16,reg16 ; o16 0F B1 /r [PENT]
CMPXCHG r/m32,reg32 ; o32 0F B1 /r [PENT]

CMPXCHG486 r/m8,reg8 ; 0F A6 /r [486,UNDOC]
CMPXCHG486 r/m16,reg16 ; o16 0F A7 /r [486,UNDOC]
CMPXCHG486 r/m32,reg32 ; o32 0F A7 /r [486,UNDOC]

These two instructions perform exactly the same operation; however, apparently some (not all)
486 processors support it under a non-standard opcode, so NASM provides the undocumented
CMPXCHG486form to generate the non-standard opcode.

CMPXCHGcompares its destination (first) operand to the value inAL, AXor EAX(depending on
the operand size of the instruction). If they are equal, it copies its source (second) operand into

40

the destination and sets the zero flag. Otherwise, it clears the zero flag and copies the destination
register to AL, AX or EAX.

The destination can be either a register or a memory location. The source is a register.

CMPXCHGis intended to be used for atomic operations in multitasking or multiprocessor
environments. To safely update a value in shared memory, for example, you might load
the value intoEAX, load the updated value intoEBX, and then execute the instruction
LOCK CMPXCHG [value],EBX . If value has not changed since being loaded, it is updated
with your desired new value, and the zero flag is set to let you know it has worked. (TheLOCK
prefix prevents another processor doing anything in the middle of this operation: it guarantees
atomicity.) However, if another processor has modified the value in between your load and your
attempted store, the store does not happen, and you are notified of the failure by a cleared zero
flag, so you can go round and try again.

A.5.31 CMPXCHG8B: Compare and Exchange Eight Bytes

CMPXCHG8B mem ; 0F C7 /1 [PENT]

This is a larger and more unwieldy version ofCMPXCHG: it compares the 64-bit (eight-byte)
value stored at[mem] with the value inEDX:EAX. If they are equal, it sets the zero flag and
storesECX:EBX into the memory area. If they are unequal, it clears the zero flag and stores the
memory contents intoEDX:EAX.

CMPXCHG8Bcan be used with theLOCKprefix, to allow atomic execution. This is useful in
multi-processor and multi-tasking environments.

A.5.32 COMISD: Scalar Ordered Double-Precision FP Compare and Set
EFLAGS

COMISD xmm1,xmm2/mem64 ; 66 0F 2F /r [WILLAMETTE,SSE2]

COMISDcompares the low-order double-precision FP value in the two source operands. ZF,
PF and CF are set according to the result. OF, AF and AF are cleared. The unordered result is
returned if either source is a NaN (QNaN or SNaN).

The destination operand is anXMMregister. The source can be either anXMMregister or a memory
location.

The flags are set according to the following rules:

 Result Flags Values

 UNORDERED: ZF,PF,CF <-- 111;
 GREATER_THAN: ZF,PF,CF <-- 000;
 LESS_THAN: ZF,PF,CF <-- 001;
 EQUAL: ZF,PF,CF <-- 100;

A.5.33 COMISS: Scalar Ordered Single-Precision FP Compare and Set
EFLAGS

COMISS xmm1,xmm2/mem32 ; 66 0F 2F /r [KATMAI,SSE]

COMISScompares the low-order single-precision FP value in the two source operands. ZF,
PF and CF are set according to the result. OF, AF and AF are cleared. The unordered result is

41

returned if either source is a NaN (QNaN or SNaN).

The destination operand is anXMMregister. The source can be either anXMMregister or a memory
location.

The flags are set according to the following rules:

 Result Flags Values

 UNORDERED: ZF,PF,CF <-- 111;
 GREATER_THAN: ZF,PF,CF <-- 000;
 LESS_THAN: ZF,PF,CF <-- 001;
 EQUAL: ZF,PF,CF <-- 100;

A.5.34 CPUID: Get CPU Identification Code

CPUID ; 0F A2 [PENT]

CPUID returns various information about the processor it is being executed on. It fills the
four registersEAX, EBX, ECXandEDXwith information, which varies depending on the input
contents ofEAX.

CPUIDalso acts as a barrier to serialize instruction execution: executing theCPUID instruction
guarantees that all the effects (memory modification, flag modification, register modification)
of previous instructions have been completed before the next instruction gets fetched.

The information returned is as follows:

• If EAX is zero on input,EAX on output holds the maximum acceptable input value of
EAX, andEBX:EDX:ECX contain the string ‘GenuineIntel ’ (or not, if you have a
clone processor). That is to say,EBXcontains ‘Genu’ (in NASM's own sense of character
constants),EDXcontains ‘ineI ’ andECXcontains ‘ntel ’.

• If EAXis one on input,EAXon output contains version information about the processor, and
EDXcontains a set of feature flags, showing the presence and absence of various features.
For example, bit 8 is set if theCMPXCHG8Binstruction (section A.5.31) is supported,
bit 15 is set if the conditional move instructions (section A.5.23 and section A.5.72) are
supported, and bit 23 is set ifMMXinstructions are supported.

• If EAXis two on input,EAX, EBX, ECXandEDXall contain information about caches and
TLBs (Translation Lookahead Buffers).

For more information on the data returned fromCPUID, see the documentation from Intel and
other processor manufacturers.

A.5.35 CVTDQ2PD: Packed Signed INT32 to Packed Double-Precision FP
Conversion

CVTDQ2PD xmm1,xmm2/mem64 ; F3 0F E6 /r [WILLAMETTE,SSE2]

CVTDQ2PDconverts two packed signed doublewords from the source operand to two packed
double-precision FP values in the destination operand.

The destination operand is anXMMregister. The source can be either anXMMregister or a 64-
bit memory location. If the source is a register, the packed integers are in the low quadword.

42

A.5.36 CVTDQ2PS: Packed Signed INT32 to Packed Single-Precision FP
Conversion

CVTDQ2PS xmm1,xmm2/mem128 ; 0F 5B /r [WILLAMETTE,SSE2]

CVTDQ2PSconverts four packed signed doublewords from the source operand to four packed
single-precision FP values in the destination operand.

The destination operand is anXMMregister. The source can be either anXMMregister or a 128-
bit memory location.

For more details of this instruction, see the Intel Processor manuals.

A.5.37 CVTPD2DQ: Packed Double-Precision FP to Packed Signed INT32
Conversion

CVTPD2DQ xmm1,xmm2/mem128 ; F2 0F E6 /r [WILLAMETTE,SSE2]

CVTPD2DQconverts two packed double-precision FP values from the source operand to two
packed signed doublewords in the low quadword of the destination operand. The high quadword
of the destination is set to all 0s.

The destination operand is anXMMregister. The source can be either anXMMregister or a 128-
bit memory location.

For more details of this instruction, see the Intel Processor manuals.

A.5.38 CVTPD2PI: Packed Double-Precision FP to Packed Signed INT32
Conversion

CVTPD2PI mm,xmm/mem128 ; 66 0F 2D /r [WILLAMETTE,SSE2]

CVTPD2PI converts two packed double-precision FP values from the source operand to two
packed signed doublewords in the destination operand.

The destination operand is anMMXregister. The source can be either anXMMregister or a 128-
bit memory location.

For more details of this instruction, see the Intel Processor manuals.

A.5.39 CVTPD2PS: Packed Double-Precision FP to Packed Single-Precision
FP Conversion

CVTPD2PS xmm1,xmm2/mem128 ; 66 0F 5A /r [WILLAMETTE,SSE2]

CVTPD2PSconverts two packed double-precision FP values from the source operand to two
packed single-precision FP values in the low quadword of the destination operand. The high
quadword of the destination is set to all 0s.

The destination operand is anXMMregister. The source can be either anXMMregister or a 128-
bit memory location.

For more details of this instruction, see the Intel Processor manuals.

43

A.5.40 CVTPI2PD: Packed Signed INT32 to Packed Double-Precision FP
Conversion

CVTPI2PD xmm,mm/mem64 ; 66 0F 2A /r [WILLAMETTE,SSE2]

CVTPI2PD converts two packed signed doublewords from the source operand to two packed
double-precision FP values in the destination operand.

The destination operand is anXMMregister. The source can be either anMMXregister or a 64-
bit memory location.

For more details of this instruction, see the Intel Processor manuals.

A.5.41 CVTPI2PS: Packed Signed INT32 to Packed Single-FP Conversion

CVTPI2PS xmm,mm/mem64 ; 0F 2A /r [KATMAI,SSE]

CVTPI2PS converts two packed signed doublewords from the source operand to two packed
single-precision FP values in the low quadword of the destination operand. The high quadword
of the destination remains unchanged.

The destination operand is anXMMregister. The source can be either anMMXregister or a 64-
bit memory location.

For more details of this instruction, see the Intel Processor manuals.

A.5.42 CVTPS2DQ: Packed Single-Precision FP to Packed Signed INT32
Conversion

CVTPS2DQ xmm1,xmm2/mem128 ; 66 0F 5B /r [WILLAMETTE,SSE2]

CVTPS2DQconverts four packed single-precision FP values from the source operand to four
packed signed doublewords in the destination operand.

The destination operand is anXMMregister. The source can be either anXMMregister or a 128-
bit memory location.

For more details of this instruction, see the Intel Processor manuals.

A.5.43 CVTPS2PD: Packed Single-Precision FP to Packed Double-Precision
FP Conversion

CVTPS2PD xmm1,xmm2/mem64 ; 0F 5A /r [WILLAMETTE,SSE2]

CVTPS2PDconverts two packed single-precision FP values from the source operand to two
packed double-precision FP values in the destination operand.

The destination operand is anXMMregister. The source can be either anXMMregister or a 64-
bit memory location. If the source is a register, the input values are in the low quadword.

For more details of this instruction, see the Intel Processor manuals.

A.5.44 CVTPS2PI: Packed Single-Precision FP to Packed Signed INT32
Conversion

CVTPS2PI mm,xmm/mem64 ; 0F 2D /r [KATMAI,SSE]

44

CVTPS2PI converts two packed single-precision FP values from the source operand to two
packed signed doublewords in the destination operand.

The destination operand is anMMXregister. The source can be either anXMMregister or a 64-
bit memory location. If the source is a register, the input values are in the low quadword.

For more details of this instruction, see the Intel Processor manuals.

A.5.45 CVTSD2SI: Scalar Double-Precision FP to Signed INT32 Conversion

CVTSD2SI reg32,xmm/mem64 ; F2 0F 2D /r [WILLAMETTE,SSE2]

CVTSD2SI converts a double-precision FP value from the source operand to a signed
doubleword in the destination operand.

The destination operand is a general purpose register. The source can be either anXMMregister
or a 64-bit memory location. If the source is a register, the input value is in the low quadword.

For more details of this instruction, see the Intel Processor manuals.

A.5.46 CVTSD2SS: Scalar Double-Precision FP to Scalar Single-Precision FP
Conversion

CVTSD2SS xmm1,xmm2/mem64 ; F2 0F 5A /r [KATMAI,SSE]

CVTSD2SSconverts a double-precision FP value from the source operand to a single-precision
FP value in the low doubleword of the destination operand. The upper 3 doublewords are left
unchanged.

The destination operand is anXMMregister. The source can be either anXMMregister or a 64-
bit memory location. If the source is a register, the input value is in the low quadword.

For more details of this instruction, see the Intel Processor manuals.

A.5.47 CVTSI2SD: Signed INT32 to Scalar Double-Precision FP Conversion

CVTSI2SD xmm,r/m32 ; F2 0F 2A /r [WILLAMETTE,SSE2]

CVTSI2SD converts a signed doubleword from the source operand to a double-precision FP
value in the low quadword of the destination operand. The high quadword is left unchanged.

The destination operand is anXMMregister. The source can be either a general purpose register
or a 32-bit memory location.

For more details of this instruction, see the Intel Processor manuals.

A.5.48 CVTSI2SS: Signed INT32 to Scalar Single-Precision FP Conversion

CVTSI2SS xmm,r/m32 ; F3 0F 2A /r [KATMAI,SSE]

CVTSI2SS converts a signed doubleword from the source operand to a single-precision FP
value in the low doubleword of the destination operand. The upper 3 doublewords are left
unchanged.

The destination operand is anXMMregister. The source can be either a general purpose register
or a 32-bit memory location.

45

For more details of this instruction, see the Intel Processor manuals.

A.5.49 CVTSS2SD: Scalar Single-Precision FP to Scalar Double-Precision FP
Conversion

CVTSS2SD xmm1,xmm2/mem32 ; F3 0F 5A /r [WILLAMETTE,SSE2]

CVTSS2SDconverts a single-precision FP value from the source operand to a double-precision
FP value in the low quadword of the destination operand. The upper quadword is left unchanged.

The destination operand is anXMMregister. The source can be either anXMMregister or a 32-bit
memory location. If the source is a register, the input value is contained in the low doubleword.

For more details of this instruction, see the Intel Processor manuals.

A.5.50 CVTSS2SI: Scalar Single-Precision FP to Signed INT32 Conversion

CVTSS2SI reg32,xmm/mem32 ; F3 0F 2D /r [KATMAI,SSE]

CVTSS2SI converts a single-precision FP value from the source operand to a signed
doubleword in the destination operand.

The destination operand is a general purpose register. The source can be either anXMMregister
or a 32-bit memory location. If the source is a register, the input value is in the low doubleword.

For more details of this instruction, see the Intel Processor manuals.

A.5.51 CVTTPD2DQ: Packed Double-Precision FP to Packed Signed INT32
Conversion with Truncation

CVTTPD2DQ xmm1,xmm2/mem128 ; 66 0F E6 /r [WILLAMETTE,SSE2]

CVTTPD2DQconverts two packed double-precision FP values in the source operand to two
packed single-precision FP values in the destination operand. If the result is inexact, it is
truncated (rounded toward zero). The high quadword is set to all 0s.

The destination operand is anXMMregister. The source can be either anXMMregister or a 128-
bit memory location.

For more details of this instruction, see the Intel Processor manuals.

A.5.52 CVTTPD2PI: Packed Double-Precision FP to Packed Signed INT32
Conversion with Truncation

CVTTPD2PI mm,xmm/mem128 ; 66 0F 2C /r [WILLAMETTE,SSE2]

CVTTPD2PI converts two packed double-precision FP values in the source operand to two
packed single-precision FP values in the destination operand. If the result is inexact, it is
truncated (rounded toward zero).

The destination operand is anMMXregister. The source can be either anXMMregister or a 128-
bit memory location.

For more details of this instruction, see the Intel Processor manuals.

46

A.5.53 CVTTPS2DQ: Packed Single-Precision FP to Packed Signed INT32
Conversion with Truncation

CVTTPS2DQ xmm1,xmm2/mem128 ; F3 0F 5B /r [WILLAMETTE,SSE2]

CVTTPS2DQconverts four packed single-precision FP values in the source operand to four
packed signed doublewords in the destination operand. If the result is inexact, it is truncated
(rounded toward zero).

The destination operand is anXMMregister. The source can be either anXMMregister or a 128-
bit memory location.

For more details of this instruction, see the Intel Processor manuals.

A.5.54 CVTTPS2PI: Packed Single-Precision FP to Packed Signed INT32
Conversion with Truncation

CVTTPS2PI mm,xmm/mem64 ; 0F 2C /r [KATMAI,SSE]

CVTTPS2PI converts two packed single-precision FP values in the source operand to two
packed signed doublewords in the destination operand. If the result is inexact, it is truncated
(rounded toward zero). If the source is a register, the input values are in the low quadword.

The destination operand is anMMXregister. The source can be either anXMMregister or a 64-
bit memory location. If the source is a register, the input value is in the low quadword.

For more details of this instruction, see the Intel Processor manuals.

A.5.55 CVTTSD2SI: Scalar Double-Precision FP to Signed INT32 Conversion
with Truncation

CVTTSD2SI reg32,xmm/mem64 ; F2 0F 2C /r [WILLAMETTE,SSE2]

CVTTSD2SIconverts a double-precision FP value in the source operand to a signed doubleword
in the destination operand. If the result is inexact, it is truncated (rounded toward zero).

The destination operand is a general purpose register. The source can be either anXMMregister
or a 64-bit memory location. If the source is a register, the input value is in the low quadword.

For more details of this instruction, see the Intel Processor manuals.

A.5.56 CVTTSS2SI: Scalar Single-Precision FP to Signed INT32 Conversion
with Truncation

CVTTSD2SI reg32,xmm/mem32 ; F3 0F 2C /r [KATMAI,SSE]

CVTTSS2SIconverts a single-precision FP value in the source operand to a signed doubleword
in the destination operand. If the result is inexact, it is truncated (rounded toward zero).

The destination operand is a general purpose register. The source can be either anXMMregister
or a 32-bit memory location. If the source is a register, the input value is in the low doubleword.

For more details of this instruction, see the Intel Processor manuals.

47

A.5.57 DAA, DAS: Decimal Adjustments

DAA ; 27 [8086]
DAS ; 2F [8086]

These instructions are used in conjunction with the add and subtract instructions to perform
binary-coded decimal arithmetic inpacked(one BCD digit per nibble) form. For the unpacked
equivalents, see section A.5.1.

DAAshould be used after a one-byteADDinstruction whose destination was theAL register:
by means of examining the value in theAL and also the auxiliary carry flagAF, it determines
whether either digit of the addition has overflowed, and adjusts it (and sets the carry and
auxiliary-carry flags) if so. You can add long BCD strings together by doingADD/DAAon the
low two digits, then doingADC/DAAon each subsequent pair of digits.

DASworks similarly toDAA, but is for use afterSUBinstructions rather thanADD.

A.5.58 DEC: Decrement Integer

DEC reg16 ; o16 48+r [8086]
DEC reg32 ; o32 48+r [386]
DEC r/m8 ; FE /1 [8086]
DEC r/m16 ; o16 FF /1 [8086]
DEC r/m32 ; o32 FF /1 [386]

DECsubtracts 1 from its operand. It doesnot affect the carry flag: to affect the carry flag, use
SUB something,1 (see section A.5.305).DECaffects all the other flags according to the
result.

This instruction can be used with aLOCKprefix to allow atomic execution.

See alsoINC (section A.5.120).

A.5.59 DIV : Unsigned Integer Divide

DIV r/m8 ; F6 /6 [8086]
DIV r/m16 ; o16 F7 /6 [8086]
DIV r/m32 ; o32 F7 /6 [386]

DIV performs unsigned integer division. The explicit operand provided is the divisor; the
dividend and destination operands are implicit, in the following way:

• For DIV r/m8 , AX is divided by the given operand; the quotient is stored inAL and the
remainder inAH.

• ForDIV r/m16 , DX:AX is divided by the given operand; the quotient is stored inAXand
the remainder inDX.

• ForDIV r/m32 , EDX:EAXis divided by the given operand; the quotient is stored inEAX
and the remainder inEDX.

Signed integer division is performed by theIDIV instruction: see section A.5.117.

48

A.5.60 DIVPD: Packed Double-Precision FP Divide

DIVPD xmm1,xmm2/mem128 ; 66 0F 5E /r [WILLAMETTE,SSE2]

DIVPD divides the two packed double-precision FP values in the destination operand by the
two packed double-precision FP values in the source operand, and stores the packed double-
precision results in the destination register.

The destination is anXMMregister. The source operand can be either anXMMregister or a 128-
bit memory location.

 dst[0-63] := dst[0-63] / src[0-63],
 dst[64-127] := dst[64-127] / src[64-127].

A.5.61 DIVPS: Packed Single-Precision FP Divide

DIVPS xmm1,xmm2/mem128 ; 0F 5E /r [KATMAI,SSE]

DIVPS divides the four packed single-precision FP values in the destination operand by the four
packed single-precision FP values in the source operand, and stores the packed single-precision
results in the destination register.

The destination is anXMMregister. The source operand can be either anXMMregister or a 128-
bit memory location.

 dst[0-31] := dst[0-31] / src[0-31],
 dst[32-63] := dst[32-63] / src[32-63],
 dst[64-95] := dst[64-95] / src[64-95],
 dst[96-127] := dst[96-127] / src[96-127].

A.5.62 DIVSD: Scalar Double-Precision FP Divide

DIVSD xmm1,xmm2/mem64 ; F2 0F 5E /r [WILLAMETTE,SSE2]

DIVSD divides the low-order double-precision FP value in the destination operand by the low-
order double-precision FP value in the source operand, and stores the double-precision result in
the destination register.

The destination is anXMMregister. The source operand can be either anXMMregister or a 64-
bit memory location.

 dst[0-63] := dst[0-63] / src[0-63],
 dst[64-127] remains unchanged.

A.5.63 DIVSS: Scalar Single-Precision FP Divide

DIVSS xmm1,xmm2/mem32 ; F3 0F 5E /r [KATMAI,SSE]

DIVSS divides the low-order single-precision FP value in the destination operand by the low-
order single-precision FP value in the source operand, and stores the single-precision result in
the destination register.

The destination is anXMMregister. The source operand can be either anXMMregister or a 32-
bit memory location.

49

 dst[0-31] := dst[0-31] / src[0-31],
 dst[32-127] remains unchanged.

A.5.64 EMMS: Empty MMX State

EMMS ; 0F 77 [PENT,MMX]

EMMSsets the FPU tag word (marking which floating-point registers are available) to all ones,
meaning all registers are available for the FPU to use. It should be used after executingMMX
instructions and before executing any subsequent floating-point operations.

A.5.65 ENTER: Create Stack Frame

ENTER imm16,imm8 ; C8 iw ib [186]

ENTERconstructs a stack frame for a high-level language procedure call. The first operand (the
iw in the opcode definition above refers to the first operand) gives the amount of stack space to
allocate for local variables; the second (theib above) gives the nesting level of the procedure
(for languages like Pascal, with nested procedures).

The function ofENTER, with a nesting level of zero, is equivalent to

 PUSH EBP ; or PUSH BP in 16 bits
 MOV EBP, ESP ; or MOV BP, SP in 16 bits
 LEA ESP, [ESP - op1] ; or LEA SP, [BP - op1] in 16 bits

This creates a stack frame with the procedure parameters accessible upwards fromEBP, and
local variables accessible downwards fromEBP. Note that the flags are not modified by the
calculation.

With a nesting level of one, the stack frame created is 4 (or 2) bytes bigger, and the value of the
final frame pointerEBPis accessible in memory at[EBP-4] .

This allowsENTER, when called with a nesting level of two, to look at the stack frame described
by thepreviousvalue ofEBP, find the frame pointer at offset -4 from that, and push it along
with its new frame pointer, so that when a level-two procedure is called from within a level-one
procedure,[EBP-4] holds the frame pointer of the most recent level-one procedure call and
[EBP-8] holds that of the most recent level-two call. And so on, for nesting levels up to 31.
The nesting level is determined by bitwise AND-masking the second operand with 31.

Stack frames created byENTERcan be destroyed by theLEAVEinstruction: see section A.5.136.

A.5.66 F2XM1: Calculate 2**X-1

F2XM1 ; D9 F0 [8086,FPU]

F2XM1raises 2 to the power ofST0, subtracts one, and stores the result back intoST0. The
initial contents ofST0 must be a number in the range -1.0 to +1.0.

A.5.67 FABS: Floating-Point Absolute Value

FABS ; D9 E1 [8086,FPU]

FABScomputes the absolute value ofST0,by clearing the sign bit, and stores the result back in
ST0.

50

A.5.68 FADD, FADDP: Floating-Point Addition

FADD mem32 ; D8 /0 [8086,FPU]
FADD mem64 ; DC /0 [8086,FPU]

FADD fpureg ; D8 C0+r [8086,FPU]
FADD ST0,fpureg ; D8 C0+r [8086,FPU]

FADD TO fpureg ; DC C0+r [8086,FPU]
FADD fpureg,ST0 ; DC C0+r [8086,FPU]

FADDP fpureg ; DE C0+r [8086,FPU]
FADDP fpureg,ST0 ; DE C0+r [8086,FPU]

• FADD, given one operand, adds the operand toST0 and stores the result back inST0. If
the operand has theTOmodifier, the result is stored in the register given rather than inST0.

• FADDPperforms the same function asFADD TO, but pops the register stack after storing
the result.

The given two-operand forms are synonyms for the one-operand forms.

To add an integer value toST0, use theFIADD instruction (section A.5.80).

A.5.69 FBLD, FBSTP: BCD Floating-Point Load and Store

FBLD mem80 ; DF /4 [8086,FPU]
FBSTP mem80 ; DF /6 [8086,FPU]

FBLD loads an 80-bit (ten-byte) packed binary-coded decimal number from the given memory
address, converts it to a real, and pushes it on the register stack.FBSTPstores the value ofST0,
in packed BCD, at the given address and then pops the register stack.

A.5.70 FCHS: Floating-Point Change Sign

FCHS ; D9 E0 [8086,FPU]

FCHSnegates the number inST0, by inverting the sign bit: negative numbers become positive,
and vice versa.

A.5.71 FCLEX, FNCLEX: Clear Floating-Point Exceptions

FCLEX ; 9B DB E2 [8086,FPU]
FNCLEX ; DB E2 [8086,FPU]

FCLEXclears any floating-point exceptions which may be pending.FNCLEXdoes the same
thing but doesn't wait for previous floating-point operations (including thehandlingof pending
exceptions) to finish first.

A.5.72 FCMOVcc: Floating-Point Conditional Move

FCMOVB fpureg ; DA C0+r [P6,FPU]
FCMOVB ST0,fpureg ; DA C0+r [P6,FPU]

FCMOVE fpureg ; DA C8+r [P6,FPU]
FCMOVE ST0,fpureg ; DA C8+r [P6,FPU]

51

FCMOVBE fpureg ; DA D0+r [P6,FPU]
FCMOVBE ST0,fpureg ; DA D0+r [P6,FPU]

FCMOVU fpureg ; DA D8+r [P6,FPU]
FCMOVU ST0,fpureg ; DA D8+r [P6,FPU]

FCMOVNB fpureg ; DB C0+r [P6,FPU]
FCMOVNB ST0,fpureg ; DB C0+r [P6,FPU]

FCMOVNE fpureg ; DB C8+r [P6,FPU]
FCMOVNE ST0,fpureg ; DB C8+r [P6,FPU]

FCMOVNBE fpureg ; DB D0+r [P6,FPU]
FCMOVNBE ST0,fpureg ; DB D0+r [P6,FPU]

FCMOVNU fpureg ; DB D8+r [P6,FPU]
FCMOVNU ST0,fpureg ; DB D8+r [P6,FPU]

TheU instructions perform conditional move operations: each of them moves the contents of
the given register intoST0 if its condition is satisfied, and does nothing if not.

The conditions are not the same as the standard condition codes used with conditional jump
instructions. The conditionsB, BE, NB, NBE, E andNEare exactly as normal, but none of the
other standard ones are supported. Instead, the conditionUand its counterpartNUare provided;
theUcondition is satisfied if the last two floating-point numbers compared wereunordered, i.e.
they were not equal but neither one could be said to be greater than the other, for example if they
were NaNs. (The flag state which signals this is the setting of the parity flag: so theUcondition
is notionally equivalent toPE, andNUis equivalent toPO.)

TheFCMOVconditions test the main processor's status flags, not the FPU status flags, so using
FCMOVdirectly afterFCOMwill not work. Instead, you should either useFCOMIwhich writes
directly to the main CPU flags word, or useFSTSWto extract the FPU flags.

Although theFCMOVinstructions are flaggedP6 above, they may not be supported by all
Pentium Pro processors; theCPUIDinstruction (section A.5.34) will return a bit which indicates
whether conditional moves are supported.

A.5.73 FCOM, FCOMP, FCOMPP, FCOMI, FCOMIP: Floating-Point Compare

FCOM mem32 ; D8 /2 [8086,FPU]
FCOM mem64 ; DC /2 [8086,FPU]
FCOM fpureg ; D8 D0+r [8086,FPU]
FCOM ST0,fpureg ; D8 D0+r [8086,FPU]

FCOMP mem32 ; D8 /3 [8086,FPU]
FCOMP mem64 ; DC /3 [8086,FPU]
FCOMP fpureg ; D8 D8+r [8086,FPU]
FCOMP ST0,fpureg ; D8 D8+r [8086,FPU]

FCOMPP ; DE D9 [8086,FPU]

FCOMI fpureg ; DB F0+r [P6,FPU]
FCOMI ST0,fpureg ; DB F0+r [P6,FPU]

FCOMIP fpureg ; DF F0+r [P6,FPU]

52

FCOMIP ST0,fpureg ; DF F0+r [P6,FPU]

FCOMcomparesST0 with the given operand, and sets the FPU flags accordingly.ST0 is treated
as the left-hand side of the comparison, so that the carry flag is set (for a ‘less-than’ result) if
ST0 is less than the given operand.

FCOMPdoes the same asFCOM, but pops the register stack afterwards.FCOMPPcomparesST0
with ST1 and then pops the register stack twice.

FCOMIandFCOMIPwork like the corresponding forms ofFCOMandFCOMP, but write their
results directly to the CPU flags register rather than the FPU status word, so they can be
immediately followed by conditional jump or conditional move instructions.

TheFCOMinstructions differ from theFUCOMinstructions (section A.5.108) only in the way
they handle quiet NaNs:FUCOMwill handle them silently and set the condition code flags to an
‘unordered’ result, whereasFCOMwill generate an exception.

A.5.74 FCOS: Cosine

FCOS ; D9 FF [386,FPU]

FCOScomputes the cosine ofST0 (in radians), and stores the result inST0. The absolute value
of ST0 must be less than 2**63.

See alsoFSINCOS(section A.5.100).

A.5.75 FDECSTP: Decrement Floating-Point Stack Pointer

FDECSTP ; D9 F6 [8086,FPU]

FDECSTPdecrements the ‘top’ field in the floating-point status word. This has the effect of
rotating the FPU register stack by one, as if the contents ofST7 had been pushed on the stack.
See alsoFINCSTP (section A.5.85).

A.5.76 FxDISI , FxENI : Disable and Enable Floating-Point Interrupts

FDISI ; 9B DB E1 [8086,FPU]
FNDISI ; DB E1 [8086,FPU]

FENI ; 9B DB E0 [8086,FPU]
FNENI ; DB E0 [8086,FPU]

FDISI and FENI disable and enable floating-point interrupts. These instructions are only
meaningful on original 8087 processors: the 287 and above treat them as no-operation
instructions.

FNDISI andFNENI do the same thing asFDISI andFENI respectively, but without waiting
for the floating-point processor to finish what it was doing first.

A.5.77 FDIV , FDIVP, FDIVR, FDIVRP: Floating-Point Division

FDIV mem32 ; D8 /6 [8086,FPU]
FDIV mem64 ; DC /6 [8086,FPU]

FDIV fpureg ; D8 F0+r [8086,FPU]
FDIV ST0,fpureg ; D8 F0+r [8086,FPU]

53

FDIV TO fpureg ; DC F8+r [8086,FPU]
FDIV fpureg,ST0 ; DC F8+r [8086,FPU]

FDIVR mem32 ; D8 /7 [8086,FPU]
FDIVR mem64 ; DC /7 [8086,FPU]

FDIVR fpureg ; D8 F8+r [8086,FPU]
FDIVR ST0,fpureg ; D8 F8+r [8086,FPU]

FDIVR TO fpureg ; DC F0+r [8086,FPU]
FDIVR fpureg,ST0 ; DC F0+r [8086,FPU]

FDIVP fpureg ; DE F8+r [8086,FPU]
FDIVP fpureg,ST0 ; DE F8+r [8086,FPU]

FDIVRP fpureg ; DE F0+r [8086,FPU]
FDIVRP fpureg,ST0 ; DE F0+r [8086,FPU]

• FDIV dividesST0 by the given operand and stores the result back inST0, unless theTO
qualifier is given, in which case it divides the given operand byST0 and stores the result
in the operand.

• FDIVR does the same thing, but does the division the other way up: so ifTOis not given,
it divides the given operand byST0 and stores the result inST0, whereas ifTOis given it
dividesST0 by its operand and stores the result in the operand.

• FDIVP operates likeFDIV TO, but pops the register stack once it has finished.

• FDIVRP operates likeFDIVR TO, but pops the register stack once it has finished.

For FP/Integer divisions, seeFIDIV (section A.5.82).

A.5.78 FEMMS: Faster Enter/Exit of the MMX or floating-point state

FEMMS ; 0F 0E [PENT,3DNOW]

FEMMScan be used in place of theEMMSinstruction on processors which support the 3DNow!
instruction set. Following execution ofFEMMS, the state of theMMX/FPregisters is undefined,
and this allows a faster context switch betweenFPandMMXinstructions. TheFEMMSinstruction
can also be usedbeforeexecutingMMXinstructions.

A.5.79 FFREE: Flag Floating-Point Register as Unused

FFREE fpureg ; DD C0+r [8086,FPU]
FFREEP fpureg ; DF C0+r [286,FPU,UNDOC]

FFREEmarks the given register as being empty.

FFREEPmarks the given register as being empty, and then pops the register stack.

A.5.80 FIADD: Floating-Point/Integer Addition

FIADD mem16 ; DE /0 [8086,FPU]
FIADD mem32 ; DA /0 [8086,FPU]

FIADD adds the 16-bit or 32-bit integer stored in the given memory location toST0, storing

54

the result inST0.

A.5.81 FICOM, FICOMP: Floating-Point/Integer Compare

FICOM mem16 ; DE /2 [8086,FPU]
FICOM mem32 ; DA /2 [8086,FPU]

FICOMP mem16 ; DE /3 [8086,FPU]
FICOMP mem32 ; DA /3 [8086,FPU]

FICOMcomparesST0 with the 16-bit or 32-bit integer stored in the given memory location, and
sets the FPU flags accordingly.FICOMPdoes the same, but pops the register stack afterwards.

A.5.82 FIDIV , FIDIVR : Floating-Point/Integer Division

FIDIV mem16 ; DE /6 [8086,FPU]
FIDIV mem32 ; DA /6 [8086,FPU]

FIDIVR mem16 ; DE /7 [8086,FPU]
FIDIVR mem32 ; DA /7 [8086,FPU]

FIDIV dividesST0 by the 16-bit or 32-bit integer stored in the given memory location, and
stores the result inST0. FIDIVR does the division the other way up: it divides the integer by
ST0, but still stores the result inST0.

A.5.83 FILD , FIST , FISTP : Floating-Point/Integer Conversion

FILD mem16 ; DF /0 [8086,FPU]
FILD mem32 ; DB /0 [8086,FPU]
FILD mem64 ; DF /5 [8086,FPU]

FIST mem16 ; DF /2 [8086,FPU]
FIST mem32 ; DB /2 [8086,FPU]

FISTP mem16 ; DF /3 [8086,FPU]
FISTP mem32 ; DB /3 [8086,FPU]
FISTP mem64 ; DF /7 [8086,FPU]

FILD loads an integer out of a memory location, converts it to a real, and pushes it on the FPU
register stack.FIST convertsST0 to an integer and stores that in memory;FISTP does the
same asFIST , but pops the register stack afterwards.

A.5.84 FIMUL: Floating-Point/Integer Multiplication

FIMUL mem16 ; DE /1 [8086,FPU]
FIMUL mem32 ; DA /1 [8086,FPU]

FIMUL multipliesST0 by the 16-bit or 32-bit integer stored in the given memory location, and
stores the result inST0.

A.5.85 FINCSTP: Increment Floating-Point Stack Pointer

FINCSTP ; D9 F7 [8086,FPU]

FINCSTP increments the ‘top’ field in the floating-point status word. This has the effect of
rotating the FPU register stack by one, as if the register stack had been popped; however, unlike

55

the popping of the stack performed by many FPU instructions, it does not flag the newST7
(previouslyST0) as empty. See alsoFDECSTP(section A.5.75).

A.5.86 FINIT , FNINIT : initialize Floating-Point Unit

FINIT ; 9B DB E3 [8086,FPU]
FNINIT ; DB E3 [8086,FPU]

FINIT initializes the FPU to its default state. It flags all registers as empty, without actually
change their values, clears the top of stack pointer.FNINIT does the same, without first waiting
for pending exceptions to clear.

A.5.87 FISUB: Floating-Point/Integer Subtraction

FISUB mem16 ; DE /4 [8086,FPU]
FISUB mem32 ; DA /4 [8086,FPU]

FISUBR mem16 ; DE /5 [8086,FPU]
FISUBR mem32 ; DA /5 [8086,FPU]

FISUB subtracts the 16-bit or 32-bit integer stored in the given memory location fromST0,
and stores the result inST0. FISUBR does the subtraction the other way round, i.e. it subtracts
ST0 from the given integer, but still stores the result inST0.

A.5.88 FLD: Floating-Point Load

FLD mem32 ; D9 /0 [8086,FPU]
FLD mem64 ; DD /0 [8086,FPU]
FLD mem80 ; DB /5 [8086,FPU]
FLD fpureg ; D9 C0+r [8086,FPU]

FLD loads a floating-point value out of the given register or memory location, and pushes it on
the FPU register stack.

A.5.89 FLDxx : Floating-Point Load Constants

FLD1 ; D9 E8 [8086,FPU]
FLDL2E ; D9 EA [8086,FPU]
FLDL2T ; D9 E9 [8086,FPU]
FLDLG2 ; D9 EC [8086,FPU]
FLDLN2 ; D9 ED [8086,FPU]
FLDPI ; D9 EB [8086,FPU]
FLDZ ; D9 EE [8086,FPU]

These instructions push specific standard constants on the FPU register stack.

 Instruction Constant pushed

 FLD1 1
 FLDL2E base-2 logarithm of e
 FLDL2T base-2 log of 10
 FLDLG2 base-10 log of 2
 FLDLN2 base-e log of 2
 FLDPI pi
 FLDZ zero

56

A.5.90 FLDCW: Load Floating-Point Control Word

FLDCW mem16 ; D9 /5 [8086,FPU]

FLDCWloads a 16-bit value out of memory and stores it into the FPU control word (governing
things like the rounding mode, the precision, and the exception masks). See alsoFSTCW(section
A.5.103). If exceptions are enabled and you don't want to generate one, useFCLEXor FNCLEX
(section A.5.71) before loading the new control word.

A.5.91 FLDENV: Load Floating-Point Environment

FLDENV mem ; D9 /4 [8086,FPU]

FLDENVloads the FPU operating environment (control word, status word, tag word, instruction
pointer, data pointer and last opcode) from memory. The memory area is 14 or 28 bytes long,
depending on the CPU mode at the time. See alsoFSTENV(section A.5.104).

A.5.92 FMUL, FMULP: Floating-Point Multiply

FMUL mem32 ; D8 /1 [8086,FPU]
FMUL mem64 ; DC /1 [8086,FPU]

FMUL fpureg ; D8 C8+r [8086,FPU]
FMUL ST0,fpureg ; D8 C8+r [8086,FPU]

FMUL TO fpureg ; DC C8+r [8086,FPU]
FMUL fpureg,ST0 ; DC C8+r [8086,FPU]

FMULP fpureg ; DE C8+r [8086,FPU]
FMULP fpureg,ST0 ; DE C8+r [8086,FPU]

FMULmultipliesST0 by the given operand, and stores the result inST0, unless theTOqualifier
is used in which case it stores the result in the operand.FMULPperforms the same operation as
FMUL TO, and then pops the register stack.

A.5.93 FNOP: Floating-Point No Operation

FNOP ; D9 D0 [8086,FPU]

FNOPdoes nothing.

A.5.94 FPATAN, FPTAN: Arctangent and Tangent

FPATAN ; D9 F3 [8086,FPU]
FPTAN ; D9 F2 [8086,FPU]

FPATANcomputes the arctangent, in radians, of the result of dividingST1 by ST0, stores the
result inST1, and pops the register stack. It works like the Catan2 function, in that changing
the sign of bothST0 andST1 changes the output value by pi (so it performs true rectangular-to-
polar coordinate conversion, withST1 being the Y coordinate andST0 being the X coordinate,
not merely an arctangent).

FPTANcomputes the tangent of the value inST0 (in radians), and stores the result back into
ST0.

The absolute value ofST0 must be less than 2**63.

57

A.5.95 FPREM, FPREM1: Floating-Point Partial Remainder

FPREM ; D9 F8 [8086,FPU]
FPREM1 ; D9 F5 [386,FPU]

These instructions both produce the remainder obtained by dividingST0 by ST1. This is
calculated, notionally, by dividingST0 by ST1, rounding the result to an integer, multiplying
by ST1 again, and computing the value which would need to be added back on to the result to
get back to the original value inST0.

The two instructions differ in the way the notional round-to-integer operation is performed.
FPREMdoes it by rounding towards zero, so that the remainder it returns always has the same
sign as the original value inST0; FPREM1does it by rounding to the nearest integer, so that the
remainder always has at most half the magnitude ofST1.

Both instructions calculatepartial remainders, meaning that they may not manage to provide
the final result, but might leave intermediate results inST0 instead. If this happens, they will set
the C2 flag in the FPU status word; therefore, to calculate a remainder, you should repeatedly
executeFPREMor FPREM1until C2 becomes clear.

A.5.96 FRNDINT: Floating-Point Round to Integer

FRNDINT ; D9 FC [8086,FPU]

FRNDINTrounds the contents ofST0 to an integer, according to the current rounding mode set
in the FPU control word, and stores the result back inST0.

A.5.97 FSAVE, FRSTOR: Save/Restore Floating-Point State

FSAVE mem ; 9B DD /6 [8086,FPU]
FNSAVE mem ; DD /6 [8086,FPU]

FRSTOR mem ; DD /4 [8086,FPU]

FSAVEsaves the entire floating-point unit state, including all the information saved byFSTENV
(section A.5.104) plus the contents of all the registers, to a 94 or 108 byte area of memory
(depending on the CPU mode).FRSTORrestores the floating-point state from the same area of
memory.

FNSAVEdoes the same asFSAVE, without first waiting for pending floating-point exceptions
to clear.

A.5.98 FSCALE: Scale Floating-Point Value by Power of Two

FSCALE ; D9 FD [8086,FPU]

FSCALEscales a number by a power of two: it roundsST1 towards zero to obtain an integer,
then multipliesST0 by two to the power of that integer, and stores the result inST0.

A.5.99 FSETPM: Set Protected Mode

FSETPM ; DB E4 [286,FPU]

This instruction initializes protected mode on the 287 floating-point coprocessor. It is only
meaningful on that processor: the 387 and above treat the instruction as a no-operation.

58

A.5.100 FSIN , FSINCOS: Sine and Cosine

FSIN ; D9 FE [386,FPU]
FSINCOS ; D9 FB [386,FPU]

FSIN calculates the sine ofST0 (in radians) and stores the result inST0. FSINCOSdoes the
same, but then pushes the cosine of the same value on the register stack, so that the sine ends up
in ST1 and the cosine inST0. FSINCOSis faster than executingFSIN andFCOS(see section
A.5.74) in succession.

The absolute value ofST0 must be less than 2**63.

A.5.101 FSQRT: Floating-Point Square Root

FSQRT ; D9 FA [8086,FPU]

FSQRTcalculates the square root ofST0 and stores the result inST0.

A.5.102 FST, FSTP: Floating-Point Store

FST mem32 ; D9 /2 [8086,FPU]
FST mem64 ; DD /2 [8086,FPU]
FST fpureg ; DD D0+r [8086,FPU]

FSTP mem32 ; D9 /3 [8086,FPU]
FSTP mem64 ; DD /3 [8086,FPU]
FSTP mem80 ; DB /7 [8086,FPU]
FSTP fpureg ; DD D8+r [8086,FPU]

FST stores the value inST0 into the given memory location or other FPU register.FSTPdoes
the same, but then pops the register stack.

A.5.103 FSTCW: Store Floating-Point Control Word

FSTCW mem16 ; 9B D9 /7 [8086,FPU]
FNSTCW mem16 ; D9 /7 [8086,FPU]

FSTCWstores theFPUcontrol word (governing things like the rounding mode, the precision,
and the exception masks) into a 2-byte memory area. See alsoFLDCW(section A.5.90).

FNSTCWdoes the same thing asFSTCW, without first waiting for pending floating-point
exceptions to clear.

A.5.104 FSTENV: Store Floating-Point Environment

FSTENV mem ; 9B D9 /6 [8086,FPU]
FNSTENV mem ; D9 /6 [8086,FPU]

FSTENVstores theFPUoperating environment (control word, status word, tag word, instruction
pointer, data pointer and last opcode) into memory. The memory area is 14 or 28 bytes long,
depending on the CPU mode at the time. See alsoFLDENV(section A.5.91).

FNSTENVdoes the same thing asFSTENV, without first waiting for pending floating-point
exceptions to clear.

59

A.5.105 FSTSW: Store Floating-Point Status Word

FSTSW mem16 ; 9B DD /7 [8086,FPU]
FSTSW AX ; 9B DF E0 [286,FPU]

FNSTSW mem16 ; DD /7 [8086,FPU]
FNSTSW AX ; DF E0 [286,FPU]

FSTSWstores theFPUstatus word intoAXor into a 2-byte memory area.

FNSTSWdoes the same thing asFSTSW, without first waiting for pending floating-point
exceptions to clear.

A.5.106 FSUB, FSUBP, FSUBR, FSUBRP: Floating-Point Subtract

FSUB mem32 ; D8 /4 [8086,FPU]
FSUB mem64 ; DC /4 [8086,FPU]

FSUB fpureg ; D8 E0+r [8086,FPU]
FSUB ST0,fpureg ; D8 E0+r [8086,FPU]

FSUB TO fpureg ; DC E8+r [8086,FPU]
FSUB fpureg,ST0 ; DC E8+r [8086,FPU]

FSUBR mem32 ; D8 /5 [8086,FPU]
FSUBR mem64 ; DC /5 [8086,FPU]

FSUBR fpureg ; D8 E8+r [8086,FPU]
FSUBR ST0,fpureg ; D8 E8+r [8086,FPU]

FSUBR TO fpureg ; DC E0+r [8086,FPU]
FSUBR fpureg,ST0 ; DC E0+r [8086,FPU]

FSUBP fpureg ; DE E8+r [8086,FPU]
FSUBP fpureg,ST0 ; DE E8+r [8086,FPU]

FSUBRP fpureg ; DE E0+r [8086,FPU]
FSUBRP fpureg,ST0 ; DE E0+r [8086,FPU]

• FSUBsubtracts the given operand fromST0 and stores the result back inST0, unless the
TOqualifier is given, in which case it subtractsST0 from the given operand and stores the
result in the operand.

• FSUBRdoes the same thing, but does the subtraction the other way up: so ifTO is not
given, it subtractsST0 from the given operand and stores the result inST0, whereas ifTO
is given it subtracts its operand fromST0 and stores the result in the operand.

• FSUBPoperates likeFSUB TO, but pops the register stack once it has finished.

• FSUBRPoperates likeFSUBR TO, but pops the register stack once it has finished.

A.5.107 FTST: Test ST0 Against Zero

FTST ; D9 E4 [8086,FPU]

FTST comparesST0 with zero and sets the FPU flags accordingly.ST0 is treated as the left-

60

hand side of the comparison, so that a ‘less-than’ result is generated ifST0 is negative.

A.5.108 FUCOMxx: Floating-Point Unordered Compare

FUCOM fpureg ; DD E0+r [386,FPU]
FUCOM ST0,fpureg ; DD E0+r [386,FPU]

FUCOMP fpureg ; DD E8+r [386,FPU]
FUCOMP ST0,fpureg ; DD E8+r [386,FPU]

FUCOMPP ; DA E9 [386,FPU]

FUCOMI fpureg ; DB E8+r [P6,FPU]
FUCOMI ST0,fpureg ; DB E8+r [P6,FPU]

FUCOMIP fpureg ; DF E8+r [P6,FPU]
FUCOMIP ST0,fpureg ; DF E8+r [P6,FPU]

• FUCOMcomparesST0 with the given operand, and sets the FPU flags accordingly.ST0
is treated as the left-hand side of the comparison, so that the carry flag is set (for a ‘less-
than’ result) ifST0 is less than the given operand.

• FUCOMPdoes the same asFUCOM, but pops the register stack afterwards.FUCOMPP
comparesST0 with ST1 and then pops the register stack twice.

• FUCOMIandFUCOMIPwork like the corresponding forms ofFUCOMandFUCOMP, but
write their results directly to the CPU flags register rather than the FPU status word, so
they can be immediately followed by conditional jump or conditional move instructions.

The FUCOMinstructions differ from theFCOMinstructions (section A.5.73) only in the way
they handle quiet NaNs:FUCOMwill handle them silently and set the condition code flags to an
‘unordered’ result, whereasFCOMwill generate an exception.

A.5.109 FXAM: Examine Class of Value in ST0

FXAM ; D9 E5 [8086,FPU]

FXAMsets the FPU flagsC3, C2 andC0 depending on the type of value stored inST0:

 Register contents Flags

 Unsupported format 000
 NaN 001
 Finite number 010
 Infinity 011
 Zero 100
 Empty register 101
 Denormal 110

Additionally, theC1 flag is set to the sign of the number.

A.5.110 FXCH: Floating-Point Exchange

FXCH ; D9 C9 [8086,FPU]
FXCH fpureg ; D9 C8+r [8086,FPU]

61

FXCH fpureg,ST0 ; D9 C8+r [8086,FPU]
FXCH ST0,fpureg ; D9 C8+r [8086,FPU]

FXCHexchangesST0 with a given FPU register. The no-operand form exchangesST0 with
ST1.

A.5.111 FXRSTOR: Restore FP, MMXand SSEState

FXRSTOR memory ; 0F AE /1 [P6,SSE,FPU]

The FXRSTORinstruction reloads theFPU, MMXandSSEstate (environment and registers),
from the 512 byte memory area defined by the source operand. This data should have been
written by a previousFXSAVE.

A.5.112 FXSAVE: Store FP, MMXand SSEState

FXSAVE memory ; 0F AE /0 [P6,SSE,FPU]

TheFXSAVEinstruction writes the currentFPU, MMXandSSEtechnology states (environment
and registers), to the 512 byte memory area defined by the destination operand. It does this
without checking for pending unmasked floating-point exceptions (similar to the operation of
FNSAVE).

Unlike theFSAVE/FNSAVEinstructions, the processor retains the contents of theFPU, MMX
andSSEstate in the processor after the state has been saved. This instruction has been optimized
to maximize floating-point save performance.

A.5.113 FXTRACT: Extract Exponent and Significand

FXTRACT ; D9 F4 [8086,FPU]

FXTRACTseparates the number inST0 into its exponent and significand (mantissa), stores
the exponent back intoST0, and then pushes the significand on the register stack (so that the
significand ends up inST0, and the exponent inST1).

A.5.114 FYL2X, FYL2XP1: Compute Y times Log2(X) or Log2(X+1)

FYL2X ; D9 F1 [8086,FPU]
FYL2XP1 ; D9 F9 [8086,FPU]

FYL2X multipliesST1 by the base-2 logarithm ofST0, stores the result inST1, and pops the
register stack (so that the result ends up inST0). ST0 must be non-zero and positive.

FYL2XP1 works the same way, but replacing the base-2 log ofST0 with that ofST0 plus one.
This time,ST0 must have magnitude no greater than 1 minus half the square root of two.

A.5.115 HLT: Halt Processor

HLT ; F4 [8086,PRIV]

HLT puts the processor into a halted state, where it will perform no more operations until
restarted by an interrupt or a reset.

On the 286 and later processors, this is a privileged instruction.

This instruction, when supported, generally causes the CPU to idle, either by sleeping a certain

62

amount of time, releasing a time slice in a multitasker, or actually halting until the next hardware
interrupt occurs. Thus, executing HLT within an input loop after not receiving any new inputs
allows to idle the system.

DPMI environments may fault when trying to execute HLT, if the host does not support this
usage. Calls such as interrupt 2Fh with AX=1680h must be used instead then.

A.5.116 IBTS : Insert Bit String

IBTS r/m16,reg16 ; o16 0F A7 /r [386,UNDOC]
IBTS r/m32,reg32 ; o32 0F A7 /r [386,UNDOC]

The implied operation of this instruction is:

IBTS r/m16,AX,CL,reg16
IBTS r/m32,EAX,CL,reg32

Writes a bit string from the source operand to the destination.CL indicates the number of bits
to be copied, from the low bits of the source.(E)AX indicates the low order bit offset in the
destination that is written to. For example, ifCL is set to 4 andAX (for 16-bit code) is set to 5,
bits 0-3 ofsrc will be copied to bits 5-8 ofdst . This instruction is very poorly documented,
and I have been unable to find any official source of documentation on it.

IBTS is supported only on the early Intel 386s, and conflicts with the opcodes forCMPXCHG486
(on early Intel 486s). NASM supports it only for completeness. Its counterpart isXBTS(see
section A.5.332).

A.5.117 IDIV : Signed Integer Divide

IDIV r/m8 ; F6 /7 [8086]
IDIV r/m16 ; o16 F7 /7 [8086]
IDIV r/m32 ; o32 F7 /7 [386]

IDIV performs signed integer division. The explicit operand provided is the divisor; the
dividend and destination operands are implicit, in the following way:

• For IDIV r/m8 , AX is divided by the given operand; the quotient is stored inAL and the
remainder inAH.

• For IDIV r/m16 , DX:AX is divided by the given operand; the quotient is stored inAX
and the remainder inDX.

• For IDIV r/m32 , EDX:EAX is divided by the given operand; the quotient is stored in
EAXand the remainder inEDX.

Unsigned integer division is performed by theDIV instruction: see section A.5.59.

A.5.118 IMUL: Signed Integer Multiply

IMUL r/m8 ; F6 /5 [8086]
IMUL r/m16 ; o16 F7 /5 [8086]
IMUL r/m32 ; o32 F7 /5 [386]

IMUL reg16,r/m16 ; o16 0F AF /r [386]
IMUL reg32,r/m32 ; o32 0F AF /r [386]

63

IMUL reg16,imm8 ; o16 6B /r ib [186]
IMUL reg16,imm16 ; o16 69 /r iw [186]
IMUL reg32,imm8 ; o32 6B /r ib [386]
IMUL reg32,imm32 ; o32 69 /r id [386]

IMUL reg16,r/m16,imm8 ; o16 6B /r ib [186]
IMUL reg16,r/m16,imm16 ; o16 69 /r iw [186]
IMUL reg32,r/m32,imm8 ; o32 6B /r ib [386]
IMUL reg32,r/m32,imm32 ; o32 69 /r id [386]

IMUL performs signed integer multiplication. For the single-operand form, the other operand
and destination are implicit, in the following way:

• For IMUL r/m8 , AL is multiplied by the given operand; the product is stored inAX.

• ForIMUL r/m16 , AXis multiplied by the given operand; the product is stored inDX:AX.

• For IMUL r/m32 , EAX is multiplied by the given operand; the product is stored in
EDX:EAX.

The two-operand form multiplies its two operands and stores the result in the destination (first)
operand. The three-operand form multiplies its last two operands and stores the result in the first
operand.

The two-operand form with an immediate second operand is in fact a shorthand for the three-
operand form, as can be seen by examining the opcode descriptions: in the two-operand form,
the code/r takes both its register andr/m parts from the same operand (the first one).

In the forms with an 8-bit immediate operand and another longer source operand, the immediate
operand is considered to be signed, and is sign-extended to the length of the other source
operand. TheBYTEqualifier can be used to force NASM to generate this form of the instruction.
Recent versions of NASM automatically optimise to this form if the immediate operand's value
is known during the assembling of that instruction, and fits in the range of a signed byte. The
longer variant can then still be forced using theSTRICT WORDor STRICT DWORDqualifier.

Unsigned integer multiplication is performed by theMULinstruction: see section A.5.184.

A.5.119 IN : Input from I/O Port

IN AL,imm8 ; E4 ib [8086]
IN AX,imm8 ; o16 E5 ib [8086]
IN EAX,imm8 ; o32 E5 ib [386]
IN AL,DX ; EC [8086]
IN AX,DX ; o16 ED [8086]
IN EAX,DX ; o32 ED [386]

IN reads a byte, word or doubleword from the specified I/O port, and stores it in the given
destination register. The port number may be specified as an immediate value if it is between 0
and 255, and otherwise must be stored inDX. See alsoOUT(section A.5.194).

A.5.120 INC: Increment Integer

INC reg16 ; o16 40+r [8086]
INC reg32 ; o32 40+r [386]

64

INC r/m8 ; FE /0 [8086]
INC r/m16 ; o16 FF /0 [8086]
INC r/m32 ; o32 FF /0 [386]

INC adds 1 to its operand. It doesnot affect the carry flag: to affect the carry flag, use
ADD something,1 (see section A.5.3).INC affects all the other flags according to the result.

This instruction can be used with aLOCKprefix to allow atomic execution.

See alsoDEC(section A.5.58).

A.5.121 INSB, INSW, INSD: Input String from I/O Port

INSB ; 6C [186]
INSW ; o16 6D [186]
INSD ; o32 6D [386]

INSB inputs a byte from the I/O port specified inDXand stores it at[ES:DI] or [ES:EDI] .
It then increments or decrements (depending on the direction flag: increments if the flag is clear,
decrements if it is set)DI or EDI .

The register used isDI if the address size is 16 bits, andEDI if it is 32 bits. If you need to use an
address size not equal to the currentBITS setting, you can use an explicita16 or a32 prefix.

Segment override prefixes have no effect for this instruction: the use ofES for the load from
[DI] or [EDI] cannot be overridden.

INSWandINSD work in the same way, but they input a word or a doubleword instead of a byte,
and increment or decrement the addressing register by 2 or 4 instead of 1.

TheREPprefix may be used to repeat the instructionCX(orECX- again, the address size chooses
which) times. TheREPaliasREPE, as well as the differently-encodedREPNE, are both allowed
as well. They behave in the same way asREP.

See alsoOUTSB, OUTSWandOUTSD(section A.5.195).

A.5.121.1 Pseudo-code examples

a16 INSB and with Direction Flag clear (UP) is equal to

IN BYTE [ES:DI], DX
LEA DI, [DI + 1]

a16 REP INSWand with Direction Flag clear (UP) is equal to

JCXZ @FF
@@:
IN WORD [ES:DI], DX
LEA DI, [DI + 2]
a16 LOOP @B
@@:

a32 INSD with Direction Flag set (DN) is equal to

IN DWORD [ES:EDI], DX
LEA EDI, [EDI - 4]

65

A.5.122 INT : Software Interrupt

INT imm8 ; CD ib [8086]

INT causes a software interrupt through a specified vector number from 0 to 255.

The code generated by theINT instruction is always two bytes long: although there are
short forms for someINT instructions, NASM does not generate them when it sees theINT
mnemonic. In order to generate single-byte breakpoint instructions, use theINT3 or INT1
instructions (see section A.5.123) instead.

A.5.123 INT3 , INT1 , ICEBP, INT01 : Breakpoints

INT1 ; F1 [P6]
ICEBP ; F1 [P6]
INT01 ; F1 [P6]

INT3 ; CC [8086]
INT03 ; CC [8086]

INT1 andINT3 are short one-byte forms of the instructionsINT 1 andINT 3 (see section
A.5.122). They perform a similar function to their longer counterparts, but take up less code
space. They are used as breakpoints by debuggers.

• INT1 , and its alternative synonymsINT01 andICEBP, is an instruction used by in-circuit
emulators (ICEs). It is present, though not documented, on some processors down to the
286, but is only documented for the Pentium Pro.INT3 is the instruction normally used
as a breakpoint by debuggers.

• INT3 , and its synonymINT03 , is not precisely equivalent toINT 3 : the short form, since
it is designed to be used as a breakpoint, bypasses the normalIOPL checks in virtual-8086
mode, and also does not go through interrupt redirection.

A.5.124 INTO: Interrupt if Overflow

INTO ; CE [8086]

INTO performs anINT 4 software interrupt (see section A.5.122) if and only if the overflow
flag is set.

A.5.125 INVD: Invalidate Internal Caches

INVD ; 0F 08 [486]

INVD invalidates and empties the processor's internal caches, and causes the processor to
instruct external caches to do the same. It does not write the contents of the caches back to
memory first: any modified data held in the caches will be lost. To write the data back first, use
WBINVD(section A.5.328).

A.5.126 INVLPG: Invalidate TLB Entry

INVLPG mem ; 0F 01 /7 [486]

INVLPG invalidates the translation lookahead buffer (TLB) entry associated with the supplied
memory address.

66

A.5.127 IRET , IRETW, IRETD: Return from Interrupt

IRET ; CF [8086]
IRETW ; o16 CF [8086]
IRETD ; o32 CF [386]

IRET returns from an interrupt (hardware or software) by means of poppingIP (or EIP), CS
and the flags off the stack and then continuing execution from the newCS:IP .

IRETWpopsIP , CSand the flags as 2 bytes each, taking 6 bytes off the stack in total.IRETD
popsEIP as 4 bytes, pops a further 4 bytes of which the top two are discarded and the bottom
two go intoCS, and pops the flags as 4 bytes as well, taking 12 bytes off the stack.

IRET is a shorthand for eitherIRETWor IRETD, depending on the defaultBITS setting at the
time.

A.5.128 Jcc : Conditional Branch

Jcc imm ; 70+cc rb [8086]
Jcc NEAR imm ; 0F 80+cc rw/rd [386]
Jcc NEAR imm ; 70+(cc^1) 03 E9 rw [8086]

The conditional jump instructions execute a near (same segment) jump if and only if their
conditions are satisfied. For example,JNZ jumps only if the zero flag is not set.

The ordinary form of the instructions has only a 128-byte range. The single-instructionNEAR
form is a 386 extension to the instruction set, and can span the full size of a segment. When
CPUis set to 386, NASM will automatically choose the single-instructionNEARform when the
jump exceeds theSHORTrange.

WhenCPUis set to below 386 (any of 286, 186, 8086), recent versions of NASM will generate
two instructions to work around the range limitation. The first instruction will be a short
conditional jump of the opposite condition code as the one desired. This first jump will (if
taken) jump to behind the second instruction, which is an unconditional near jump. (Only the
16-bit variant is shown for this, because 32-bit assembly means that the single-instruction form
is available.)

You can override the choice of jump instruction using an explicitSHORTkeyword, which will
cause an error if the jump target is out of range. Also, an explicitSTRICT NEARqualifier makes
NASM always use the single-instruction near jump, even if not needed. (IfCPUis set to below
386, this will result in an error.) There is no way to force the work around pair of instructions;
if you want these unconditionally, you have to code them manually.

For details of the condition codes, see section A.2.2.

A.5.129 JCXZ, JECXZ: Jump if CX/ECX Zero

JCXZ imm ; a16 E3 rb [8086]
JECXZ imm ; a32 E3 rb [386]

JCXZperforms a short jump (with maximum range 128 bytes) if and only if the contents of the
CXregister is 0.JECXZdoes the same thing, but withECX.

67

A.5.130 JMP: Jump

JMP imm ; E9 rw/rd [8086]
JMP SHORT imm ; EB rb [8086]
JMP imm:imm16 ; o16 EA iw iw [8086]
JMP imm:imm32 ; o32 EA id iw [386]
JMP FAR mem ; o16 FF /5 [8086]
JMP FAR mem32 ; o32 FF /5 [386]
JMP r/m16 ; o16 FF /4 [8086]
JMP r/m32 ; o32 FF /4 [386]

JMPjumps to a given address. The address may be specified as an absolute segment and offset,
or as a relative jump within the current segment.

JMP SHORT immhas a maximum range of 128 bytes, since the displacement is specified as
only 8 bits, but takes up less code space. Recent versions of NASM automatically generate
a JMP SHORTfor you when the target is in range and known during assembling (ie, before
linking). Specifying theSHORTkeyword explicitly will cause an error if the jump target is out
of range. Specifying aSTRICT NEARqualifier forces NASM to assemble a near jump, even
if the target is in range of a short jump.

You can choose between the two immediate far jump forms (JMP imm:imm)
by the use of theWORDand DWORDkeywords: JMP WORD 0x1234:0x5678 or
JMP DWORD 0x1234:0x56789abc .

The JMP FAR memforms execute a far jump by loading the destination address out of
memory. The address loaded consists of 16 or 32 bits of offset (depending on the operand size),
and 16 bits of segment. The operand size may be overridden usingJMP WORD FAR memor
JMP DWORD FAR mem.

TheJMP r/m forms execute a near jump (within the same segment), loading the destination
address out of memory or out of a register. The keywordNEARmay be specified, for clarity, in
these forms, but is not necessary. Again, operand size can be overridden usingJMP WORD mem
or JMP DWORD mem.

As a convenience, NASM does not require you to jump to a far symbol by coding
the cumbersomeJMP SEG routine:routine , but instead allows the easier synonym
JMP FAR routine .

A.5.131 LAHF: Load AH from Flags

LAHF ; 9F [8086]

LAHFsets theAHregister according to the contents of the low byte of the flags word.

The operation ofLAHF is:

 AH <-- SF:ZF:0:AF:0:PF:1:CF

See alsoSAHF(section A.5.282).

68

A.5.132 LAR: Load Access Rights

LAR reg16,r/m16 ; o16 0F 02 /r [286,PRIV]
LAR reg32,r/m32 ; o32 0F 02 /r [386,PRIV]

LARtakes the segment selector specified by its source (second) operand, finds the corresponding
segment descriptor in the GDT or LDT, and loads the access-rights byte of the descriptor into
its destination (first) operand.

A.5.133 LDMXCSR: Load Streaming SIMD Extension Control/Status

LDMXCSR mem32 ; 0F AE /2 [KATMAI,SSE]

LDMXCSRloads 32-bits of data from the specified memory location into theMXCSR
control/status register.MXCSRis used to enable masked/unmasked exception handling, to set
rounding modes, to set flush-to-zero mode, and to view exception status flags.

For details of theMXCSRregister, see the Intel processor docs.

See alsoSTMXCSR(section A.5.302

A.5.134 LDS, LES, LFS, LGS, LSS: Load Far Pointer

LDS reg16,mem ; o16 C5 /r [8086]
LDS reg32,mem ; o32 C5 /r [386]

LES reg16,mem ; o16 C4 /r [8086]
LES reg32,mem ; o32 C4 /r [386]

LFS reg16,mem ; o16 0F B4 /r [386]
LFS reg32,mem ; o32 0F B4 /r [386]

LGS reg16,mem ; o16 0F B5 /r [386]
LGS reg32,mem ; o32 0F B5 /r [386]

LSS reg16,mem ; o16 0F B2 /r [386]
LSS reg32,mem ; o32 0F B2 /r [386]

These instructions load an entire far pointer (16 or 32 bits of offset, plus 16 bits of segment) out
of memory in one go.LDS, for example, loads 16 or 32 bits from the given memory address
into the given register (depending on the size of the register), then loads thenext16 bits from
memory intoDS. LES, LFS, LGSandLSS work in the same way but use the other segment
registers.

A.5.135 LEA: Load Effective Address

LEA reg16,mem ; o16 8D /r [8086]
LEA reg32,mem ; o32 8D /r [386]

LEA, despite its syntax, does not access memory. It calculates the effective address specified
by its second operand as if it were going to load or store data from it, but instead it stores the
calculated address into the register specified by its first operand. This can be used to perform
quite complex calculations (e.g.LEA EAX,[EBX+ECX*4+100]) in one instruction.

LEA, despite being a purely arithmetic instruction which accesses no memory, still requires

69

square brackets around its second operand, as if it were a memory reference.

The size of the calculation is the currentaddresssize, and the size that the result is stored as is
the currentoperandsize. If the address and operand size are not the same, then if the addressing
mode was 32-bits, the low 16-bits are stored, and if the address was 16-bits, it is zero-extended
to 32-bits before storing.

The ModR/M byte (see section A.2.6) can encode a register as source operand, but this is an
invalid instruction.

A.5.136 LEAVE: Destroy Stack Frame

LEAVE ; C9 [186]

LEAVEdestroys a stack frame of the form created by theENTERinstruction (see section A.5.65).
It is functionally equivalent toMOV ESP,EBPfollowed by POP EBP(or MOV SP,BP
followed byPOP BPin 16-bit mode).

A.5.137 LFENCE: Load Fence

LFENCE ; 0F AE /5 [WILLAMETTE,SSE2]

LFENCEperforms a serialising operation on all loads from memory that were issued before the
LFENCEinstruction. This guarantees that all memory reads before theLFENCEinstruction are
visible before any reads after theLFENCEinstruction.

LFENCEis ordered respective to otherLFENCEinstruction,MFENCE, any memory read and
any other serialising instruction (such asCPUID).

Weakly ordered memory types can be used to achieve higher processor performance through
such techniques as out-of-order issue and speculative reads. The degree to which a consumer
of data recognizes or knows that the data is weakly ordered varies among applications and may
be unknown to the producer of this data. TheLFENCEinstruction provides a performance-
efficient way of ensuring load ordering between routines that produce weakly-ordered results
and routines that consume that data.

LFENCEuses the following ModR/M encoding:

 Mod (7:6) = 11B
 Reg/Opcode (5:3) = 101B
 R/M (2:0) = 000B

All other ModR/M encodings are defined to be reserved, and use of these encodings risks
incompatibility with future processors.

See alsoSFENCE(section A.5.288) andMFENCE(section A.5.151).

A.5.138 LGDT, LIDT , LLDT: Load Descriptor Tables

LGDT mem ; 0F 01 /2 [286,PRIV]
LIDT mem ; 0F 01 /3 [286,PRIV]
LLDT r/m16 ; 0F 00 /2 [286,PRIV]

LGDTandLIDT both take a 6-byte memory area as an operand: they load a 16-bit size limit
and a 32-bit linear address from that area (limit word first, then linear address dword) into the

70

GDTR(global descriptor table register) orIDTR (interrupt descriptor table register). The GDT
and IDT instructions are the only instructions which directly uselinear addresses, rather than
segment/offset pairs.

LLDT takes a segment selector as an operand. The processor looks up that selector in the GDT
and stores the limit and base address given there into theLDTR(local descriptor table register).

See alsoSGDT, SIDT andSLDT(section A.5.289).

A.5.139 LMSW: Load/Store Machine Status Word

LMSW r/m16 ; 0F 01 /6 [286,PRIV]

LMSWloads the bottom four bits of the source operand into the bottom four bits of theCR0
control register (or the Machine Status Word, on 286 processors). See alsoSMSW(section
A.5.296).

A.5.140 LOADALL, LOADALL286: Load Processor State

LOADALL ; 0F 07 [386,UNDOC]
LOADALL286 ; 0F 05 [286,UNDOC]

This instruction, in its two different-opcode forms, is apparently supported on most 286
processors, some 386 and possibly some 486. The opcode differs between the 286 and the 386.

The function of the instruction is to load all information relating to the state of the processor out
of a block of memory: on the 286, this block is located implicitly at absolute address0x800 ,
and on the 386 and 486 it is at[ES:EDI] .

A.5.141 LODSB, LODSW, LODSD: Load from String

LODSB ; AC [8086]
LODSW ; o16 AD [8086]
LODSD ; o32 AD [386]

LODSBloads a byte from[DS:SI] or [DS:ESI] into AL. It then increments or decrements
(depending on the direction flag: increments if the flag is clear, decrements if it is set)SI or
ESI .

The register used isSI if the address size is 16 bits, andESI if it is 32 bits. If you need to use an
address size not equal to the currentBITS setting, you can use an explicita16 or a32 prefix.

The segment register used to load from[SI] or [ESI] can be overridden by using a segment
register name as a prefix (for example,ES LODSB).

LODSWandLODSDwork in the same way, but they load a word or a doubleword instead of a
byte, and increment or decrement the addressing registers by 2 or 4 instead of 1.

TheREPprefix may be used to repeat the instructionCX(orECX- again, the address size chooses
which) times. TheREPaliasREPE, as well as the differently-encodedREPNE, are both allowed
as well. They behave in the same way asREP.

A.5.141.1 Pseudo-code examples

a16 LODSBwithout segment override and with Direction Flag clear (UP) is equal to

71

MOV AL, BYTE [SI]
LEA SI, [SI + 1]

a32 ES LODSDwith Direction Flag set (DN) is equal to

MOV EAX, DWORD [ES:ESI]
LEA ESI, [ESI - 4]

A.5.142 LOOP, LOOPE, LOOPZ, LOOPNE, LOOPNZ: Loop with Counter

LOOP imm ; E2 rb [8086]
LOOP imm,CX ; a16 E2 rb [8086]
LOOP imm,ECX ; a32 E2 rb [386]

LOOPE imm ; E1 rb [8086]
LOOPE imm,CX ; a16 E1 rb [8086]
LOOPE imm,ECX ; a32 E1 rb [386]
LOOPZ imm ; E1 rb [8086]
LOOPZ imm,CX ; a16 E1 rb [8086]
LOOPZ imm,ECX ; a32 E1 rb [386]

LOOPNE imm ; E0 rb [8086]
LOOPNE imm,CX ; a16 E0 rb [8086]
LOOPNE imm,ECX ; a32 E0 rb [386]
LOOPNZ imm ; E0 rb [8086]
LOOPNZ imm,CX ; a16 E0 rb [8086]
LOOPNZ imm,ECX ; a32 E0 rb [386]

LOOPdecrements its counter register (eitherCXor ECX- if one is not specified explicitly, the
BITS setting dictates which is used) by one, and if the counter does not become zero as a result
of this operation, it jumps to the given label. The jump has a range of 128 bytes.

LOOPE(or its synonymLOOPZ) adds the additional condition that it only jumps if the counter
is nonzeroandthe zero flag is set. Similarly,LOOPNE(andLOOPNZ) jumps only if the counter
is nonzero and the zero flag is clear.

A.5.143 LSL: Load Segment Limit

LSL reg16,r/m16 ; o16 0F 03 /r [286,PRIV]
LSL reg32,r/m32 ; o32 0F 03 /r [386,PRIV]

LSL is given a segment selector in its source (second) operand; it computes the segment limit
value by loading the segment limit field from the associated segment descriptor in theGDTor
LDT. (This involves shifting left by 12 bits if the segment limit is page-granular, and not if it
is byte-granular; so you end up with a byte limit in either case.) The segment limit obtained is
then loaded into the destination (first) operand.

A.5.144 LTR: Load Task Register

LTR r/m16 ; 0F 00 /3 [286,PRIV]

LTR looks up the segment base and limit in the GDT or LDT descriptor specified by the segment
selector given as its operand, and loads them into the Task Register.

72

A.5.145 MASKMOVDQU: Byte Mask Write

MASKMOVDQU xmm1,xmm2 ; 66 0F F7 /r [WILLAMETTE,SSE2]

MASKMOVDQUstores data from xmm1 to the location specified byES:(E)DI . The size of the
store depends on the address-size attribute. The most significant bit in each byte of the mask
register xmm2 is used to selectively write the data (0 = no write, 1 = write) on a per-byte basis.

A.5.146 MASKMOVQ: Byte Mask Write

MASKMOVQ mm1,mm2 ; 0F F7 /r [KATMAI,MMX]

MASKMOVQstores data from mm1 to the location specified byES:(E)DI . The size of the store
depends on the address-size attribute. The most significant bit in each byte of the mask register
mm2 is used to selectively write the data (0 = no write, 1 = write) on a per-byte basis.

A.5.147 MAXPD: Return Packed Double-Precision FP Maximum

MAXPD xmm1,xmm2/m128 ; 66 0F 5F /r [WILLAMETTE,SSE2]

MAXPDperforms a SIMD compare of the packed double-precision FP numbers from xmm1 and
xmm2/mem, and stores the maximum values of each pair of values in xmm1. If the values being
compared are both zeroes, source2 (xmm2/m128) would be returned. If source2 (xmm2/m128)
is an SNaN, this SNaN is forwarded unchanged to the destination (i.e., a QNaN version of the
SNaN is not returned).

A.5.148 MAXPS: Return Packed Single-Precision FP Maximum

MAXPS xmm1,xmm2/m128 ; 0F 5F /r [KATMAI,SSE]

MAXPSperforms a SIMD compare of the packed single-precision FP numbers from xmm1 and
xmm2/mem, and stores the maximum values of each pair of values in xmm1. If the values being
compared are both zeroes, source2 (xmm2/m128) would be returned. If source2 (xmm2/m128)
is an SNaN, this SNaN is forwarded unchanged to the destination (i.e., a QNaN version of the
SNaN is not returned).

A.5.149 MAXSD: Return Scalar Double-Precision FP Maximum

MAXSD xmm1,xmm2/m64 ; F2 0F 5F /r [WILLAMETTE,SSE2]

MAXSDcompares the low-order double-precision FP numbers from xmm1 and xmm2/mem,
and stores the maximum value in xmm1. If the values being compared are both zeroes, source2
(xmm2/m64) would be returned. If source2 (xmm2/m64) is an SNaN, this SNaN is forwarded
unchanged to the destination (i.e., a QNaN version of the SNaN is not returned). The high
quadword of the destination is left unchanged.

A.5.150 MAXSS: Return Scalar Single-Precision FP Maximum

MAXSS xmm1,xmm2/m32 ; F3 0F 5F /r [KATMAI,SSE]

MAXSScompares the low-order single-precision FP numbers from xmm1 and xmm2/mem, and
stores the maximum value in xmm1. If the values being compared are both zeroes, source2
(xmm2/m32) would be returned. If source2 (xmm2/m32) is an SNaN, this SNaN is forwarded
unchanged to the destination (i.e., a QNaN version of the SNaN is not returned). The high three
doublewords of the destination are left unchanged.

73

A.5.151 MFENCE: Memory Fence

MFENCE ; 0F AE /6 [WILLAMETTE,SSE2]

MFENCEperforms a serialising operation on all loads from memory and writes to memory that
were issued before theMFENCEinstruction. This guarantees that all memory reads and writes
before theMFENCEinstruction are completed before any reads and writes after theMFENCE
instruction.

MFENCEis ordered respective to otherMFENCEinstructions,LFENCE, SFENCE, any memory
read and any other serialising instruction (such asCPUID).

Weakly ordered memory types can be used to achieve higher processor performance through
such techniques as out-of-order issue, speculative reads, write-combining, and write-collapsing.
The degree to which a consumer of data recognizes or knows that the data is weakly ordered
varies among applications and may be unknown to the producer of this data. TheMFENCE
instruction provides a performance-efficient way of ensuring load and store ordering between
routines that produce weakly-ordered results and routines that consume that data.

MFENCEuses the following ModR/M encoding:

 Mod (7:6) = 11B
 Reg/Opcode (5:3) = 110B
 R/M (2:0) = 000B

All other ModR/M encodings are defined to be reserved, and use of these encodings risks
incompatibility with future processors.

See alsoLFENCE(section A.5.137) andSFENCE(section A.5.288).

A.5.152 MINPD: Return Packed Double-Precision FP Minimum

MINPD xmm1,xmm2/m128 ; 66 0F 5D /r [WILLAMETTE,SSE2]

MINPDperforms a SIMD compare of the packed double-precision FP numbers from xmm1 and
xmm2/mem, and stores the minimum values of each pair of values in xmm1. If the values being
compared are both zeroes, source2 (xmm2/m128) would be returned. If source2 (xmm2/m128)
is an SNaN, this SNaN is forwarded unchanged to the destination (i.e., a QNaN version of the
SNaN is not returned).

A.5.153 MINPS: Return Packed Single-Precision FP Minimum

MINPS xmm1,xmm2/m128 ; 0F 5D /r [KATMAI,SSE]

MINPSperforms a SIMD compare of the packed single-precision FP numbers from xmm1 and
xmm2/mem, and stores the minimum values of each pair of values in xmm1. If the values being
compared are both zeroes, source2 (xmm2/m128) would be returned. If source2 (xmm2/m128)
is an SNaN, this SNaN is forwarded unchanged to the destination (i.e., a QNaN version of the
SNaN is not returned).

A.5.154 MINSD: Return Scalar Double-Precision FP Minimum

MINSD xmm1,xmm2/m64 ; F2 0F 5D /r [WILLAMETTE,SSE2]

74

MINSDcompares the low-order double-precision FP numbers from xmm1 and xmm2/mem,
and stores the minimum value in xmm1. If the values being compared are both zeroes, source2
(xmm2/m64) would be returned. If source2 (xmm2/m64) is an SNaN, this SNaN is forwarded
unchanged to the destination (i.e., a QNaN version of the SNaN is not returned). The high
quadword of the destination is left unchanged.

A.5.155 MINSS: Return Scalar Single-Precision FP Minimum

MINSS xmm1,xmm2/m32 ; F3 0F 5D /r [KATMAI,SSE]

MINSScompares the low-order single-precision FP numbers from xmm1 and xmm2/mem, and
stores the minimum value in xmm1. If the values being compared are both zeroes, source2
(xmm2/m32) would be returned. If source2 (xmm2/m32) is an SNaN, this SNaN is forwarded
unchanged to the destination (i.e., a QNaN version of the SNaN is not returned). The high three
doublewords of the destination are left unchanged.

A.5.156 MOV: Move Data

MOV r/m8,reg8 ; 88 /r [8086]
MOV r/m16,reg16 ; o16 89 /r [8086]
MOV r/m32,reg32 ; o32 89 /r [386]
MOV reg8,r/m8 ; 8A /r [8086]
MOV reg16,r/m16 ; o16 8B /r [8086]
MOV reg32,r/m32 ; o32 8B /r [386]

MOV reg8,imm8 ; B0+r ib [8086]
MOV reg16,imm16 ; o16 B8+r iw [8086]
MOV reg32,imm32 ; o32 B8+r id [386]
MOV r/m8,imm8 ; C6 /0 ib [8086]
MOV r/m16,imm16 ; o16 C7 /0 iw [8086]
MOV r/m32,imm32 ; o32 C7 /0 id [386]

MOV AL,memoffs8 ; A0 ow/od [8086]
MOV AX,memoffs16 ; o16 A1 ow/od [8086]
MOV EAX,memoffs32 ; o32 A1 ow/od [386]
MOV memoffs8,AL ; A2 ow/od [8086]
MOV memoffs16,AX ; o16 A3 ow/od [8086]
MOV memoffs32,EAX ; o32 A3 ow/od [386]

MOV r/m16,segreg ; o16 8C /r [8086]
MOV r/m32,segreg ; o32 8C /r [386]
MOV segreg,r/m16 ; o16 8E /r [8086]
MOV segreg,r/m32 ; o32 8E /r [386]

MOV reg32,CR0/2/3/4 ; 0F 20 /r [386]
MOV reg32,DR0/1/2/3/6/7 ; 0F 21 /r [386]
MOV reg32,TR3/4/5/6/7 ; 0F 24 /r [386]
MOV CR0/2/3/4,reg32 ; 0F 22 /r [386]
MOV DR0/1/2/3/6/7,reg32 ; 0F 23 /r [386]
MOV TR3/4/5/6/7,reg32 ; 0F 26 /r [386]

MOVcopies the contents of its source (second) operand into its destination (first) operand.

75

In all forms of theMOVinstruction, the two operands are the same size, except for moving
between a segment register and anr/m32 operand. These instructions are treated exactly like
the corresponding 16-bit equivalent (so that, for example,MOV DS,EAXfunctions identically
to MOV DS,AXbut saves a prefix when in 32-bit mode), except that when a segment register
is moved into a 32-bit destination, the top two bytes of the result are undefined.

MOVmay not useCSas a destination. However, this can be encoded, which is silently accepted
by current versions of NASM, and is decoded by NDISASM.

CR4is only a supported register on the Pentium and above.

Test registers are supported on 386/486 processors and on some non-Intel Pentium class
processors.

A.5.157 MOVAPD: Move Aligned Packed Double-Precision FP Values

MOVAPD xmm1,xmm2/mem128 ; 66 0F 28 /r [WILLAMETTE,SSE2]
MOVAPD xmm1/mem128,xmm2 ; 66 0F 29 /r [WILLAMETTE,SSE2]

MOVAPDmoves a double quadword containing 2 packed double-precision FP values from the
source operand to the destination. When the source or destination operand is a memory location,
it must be aligned on a 16-byte boundary.

To move data in and out of memory locations that are not known to be on 16-byte boundaries,
use theMOVUPDinstruction (section A.5.182).

A.5.158 MOVAPS: Move Aligned Packed Single-Precision FP Values

MOVAPS xmm1,xmm2/mem128 ; 0F 28 /r [KATMAI,SSE]
MOVAPS xmm1/mem128,xmm2 ; 0F 29 /r [KATMAI,SSE]

MOVAPSmoves a double quadword containing 4 packed single-precision FP values from the
source operand to the destination. When the source or destination operand is a memory location,
it must be aligned on a 16-byte boundary.

To move data in and out of memory locations that are not known to be on 16-byte boundaries,
use theMOVUPSinstruction (section A.5.183).

A.5.159 MOVD: Move Doubleword to/from MMX Register

MOVD mm,r/m32 ; 0F 6E /r [PENT,MMX]
MOVD r/m32,mm ; 0F 7E /r [PENT,MMX]
MOVD xmm,r/m32 ; 66 0F 6E /r [WILLAMETTE,SSE2]
MOVD r/m32,xmm ; 66 0F 7E /r [WILLAMETTE,SSE2]

MOVDcopies 32 bits from its source (second) operand into its destination (first) operand. When
the destination is a 64-bitMMXregister or a 128-bitXMMregister, the input value is zero-extended
to fill the destination register.

A.5.160 MOVDQ2Q: Move Quadword from XMM to MMX register.

MOVDQ2Q mm,xmm ; F2 OF D6 /r [WILLAMETTE,SSE2]

MOVDQ2Qmoves the low quadword from the source operand to the destination operand.

76

A.5.161 MOVDQA: Move Aligned Double Quadword

MOVDQA xmm1,xmm2/m128 ; 66 OF 6F /r [WILLAMETTE,SSE2]
MOVDQA xmm1/m128,xmm2 ; 66 OF 7F /r [WILLAMETTE,SSE2]

MOVDQAmoves a double quadword from the source operand to the destination operand. When
the source or destination operand is a memory location, it must be aligned to a 16-byte boundary.

To move a double quadword to or from unaligned memory locations, use theMOVDQU
instruction (section A.5.162).

A.5.162 MOVDQU: Move Unaligned Double Quadword

MOVDQU xmm1,xmm2/m128 ; F3 OF 6F /r [WILLAMETTE,SSE2]
MOVDQU xmm1/m128,xmm2 ; F3 OF 7F /r [WILLAMETTE,SSE2]

MOVDQUmoves a double quadword from the source operand to the destination operand. When
the source or destination operand is a memory location, the memory may be unaligned.

To move a double quadword to or from known aligned memory locations, use theMOVDQA
instruction (section A.5.161).

A.5.163 MOVHLPS: Move Packed Single-Precision FP High to Low

MOVHLPS xmm1,xmm2 ; OF 12 /r [KATMAI,SSE]

MOVHLPSmoves the two packed single-precision FP values from the high quadword of the
source register xmm2 to the low quadword of the destination register, xmm2. The upper
quadword of xmm1 is left unchanged.

The operation of this instruction is:

 dst[0-63] := src[64-127],
 dst[64-127] remains unchanged.

A.5.164 MOVHPD: Move High Packed Double-Precision FP

MOVHPD xmm,m64 ; 66 OF 16 /r [WILLAMETTE,SSE2]
MOVHPD m64,xmm ; 66 OF 17 /r [WILLAMETTE,SSE2]

MOVHPDmoves a double-precision FP value between the source and destination operands. One
of the operands is a 64-bit memory location, the other is the high quadword of anXMMregister.

The operation of this instruction is:

 mem[0-63] := xmm[64-127];

or

 xmm[0-63] remains unchanged;
 xmm[64-127] := mem[0-63].

A.5.165 MOVHPS: Move High Packed Single-Precision FP

MOVHPS xmm,m64 ; 0F 16 /r [KATMAI,SSE]
MOVHPS m64,xmm ; 0F 17 /r [KATMAI,SSE]

77

MOVHPSmoves two packed single-precision FP values between the source and destination
operands. One of the operands is a 64-bit memory location, the other is the high quadword of
anXMMregister.

The operation of this instruction is:

 mem[0-63] := xmm[64-127];

or

 xmm[0-63] remains unchanged;
 xmm[64-127] := mem[0-63].

A.5.166 MOVLHPS: Move Packed Single-Precision FP Low to High

MOVLHPS xmm1,xmm2 ; OF 16 /r [KATMAI,SSE]

MOVLHPSmoves the two packed single-precision FP values from the low quadword of the
source register xmm2 to the high quadword of the destination register, xmm2. The low quadword
of xmm1 is left unchanged.

The operation of this instruction is:

 dst[0-63] remains unchanged;
 dst[64-127] := src[0-63].

A.5.167 MOVLPD: Move Low Packed Double-Precision FP

MOVLPD xmm,m64 ; 66 OF 12 /r [WILLAMETTE,SSE2]
MOVLPD m64,xmm ; 66 OF 13 /r [WILLAMETTE,SSE2]

MOVLPDmoves a double-precision FP value between the source and destination operands. One
of the operands is a 64-bit memory location, the other is the low quadword of anXMMregister.

The operation of this instruction is:

 mem(0-63) := xmm(0-63);

or

 xmm(0-63) := mem(0-63);
 xmm(64-127) remains unchanged.

A.5.168 MOVLPS: Move Low Packed Single-Precision FP

MOVLPS xmm,m64 ; OF 12 /r [KATMAI,SSE]
MOVLPS m64,xmm ; OF 13 /r [KATMAI,SSE]

MOVLPSmoves two packed single-precision FP values between the source and destination
operands. One of the operands is a 64-bit memory location, the other is the low quadword of an
XMMregister.

The operation of this instruction is:

 mem(0-63) := xmm(0-63);

or

78

 xmm(0-63) := mem(0-63);
 xmm(64-127) remains unchanged.

A.5.169 MOVMSKPD: Extract Packed Double-Precision FP Sign Mask

MOVMSKPD reg32,xmm ; 66 0F 50 /r [WILLAMETTE,SSE2]

MOVMSKPDinserts a 2-bit mask in r32, formed of the most significant bits of each double-
precision FP number of the source operand.

A.5.170 MOVMSKPS: Extract Packed Single-Precision FP Sign Mask

MOVMSKPS reg32,xmm ; 0F 50 /r [KATMAI,SSE]

MOVMSKPSinserts a 4-bit mask in r32, formed of the most significant bits of each single-
precision FP number of the source operand.

A.5.171 MOVNTDQ: Move Double Quadword Non Temporal

MOVNTDQ m128,xmm ; 66 0F E7 /r [WILLAMETTE,SSE2]

MOVNTDQmoves the double quadword from theXMMsource register to the destination memory
location, using a non-temporal hint. This store instruction minimizes cache pollution.

A.5.172 MOVNTI: Move Doubleword Non Temporal

MOVNTI m32,reg32 ; 0F C3 /r [WILLAMETTE,SSE2]

MOVNTImoves the doubleword in the source register to the destination memory location, using
a non-temporal hint. This store instruction minimizes cache pollution.

A.5.173 MOVNTPD: Move Aligned Four Packed Single-Precision FP Values Non
Temporal

MOVNTPD m128,xmm ; 66 0F 2B /r [WILLAMETTE,SSE2]

MOVNTPDmoves the double quadword from theXMMsource register to the destination memory
location, using a non-temporal hint. This store instruction minimizes cache pollution. The
memory location must be aligned to a 16-byte boundary.

A.5.174 MOVNTPS: Move Aligned Four Packed Single-Precision FP Values Non
Temporal

MOVNTPS m128,xmm ; 0F 2B /r [KATMAI,SSE]

MOVNTPSmoves the double quadword from theXMMsource register to the destination memory
location, using a non-temporal hint. This store instruction minimizes cache pollution. The
memory location must be aligned to a 16-byte boundary.

A.5.175 MOVNTQ: Move Quadword Non Temporal

MOVNTQ m64,mm ; 0F E7 /r [KATMAI,MMX]

MOVNTQmoves the quadword in theMMXsource register to the destination memory location,
using a non-temporal hint. This store instruction minimizes cache pollution.

79

A.5.176 MOVQ: Move Quadword to/from MMX Register

MOVQ mm1,mm2/m64 ; 0F 6F /r [PENT,MMX]
MOVQ mm1/m64,mm2 ; 0F 7F /r [PENT,MMX]

MOVQ xmm1,xmm2/m64 ; F3 0F 7E /r [WILLAMETTE,SSE2]
MOVQ xmm1/m64,xmm2 ; 66 0F D6 /r [WILLAMETTE,SSE2]

MOVQcopies 64 bits from its source (second) operand into its destination (first) operand. When
the source is anXMMregister, the low quadword is moved. When the destination is anXMM
register, the destination is the low quadword, and the high quadword is cleared.

A.5.177 MOVQ2DQ: Move Quadword from MMX to XMM register.

MOVQ2DQ xmm,mm ; F3 OF D6 /r [WILLAMETTE,SSE2]

MOVQ2DQmoves the quadword from the source operand to the low quadword of the destination
operand, and clears the high quadword.

A.5.178 MOVSB, MOVSW, MOVSD: Move String

MOVSB ; A4 [8086]
MOVSW ; o16 A5 [8086]
MOVSD ; o32 A5 [386]

MOVSBcopies the byte at[DS:SI] or [DS:ESI] to [ES:DI] or [ES:EDI] . It then
increments or decrements (depending on the direction flag: increments if the flag is clear,
decrements if it is set)SI andDI (or ESI andEDI).

The registers used areSI andDI if the address size is 16 bits, andESI andEDI if it is 32 bits.
If you need to use an address size not equal to the currentBITS setting, you can use an explicit
a16 or a32 prefix.

The segment register used to load from[SI] or [ESI] can be overridden by using a segment
register name as a prefix (for example,ES MOVSB). The use ofES for the store to[DI] or
[EDI] cannot be overridden.

MOVSWandMOVSDwork in the same way, but they copy a word or a doubleword instead of a
byte, and increment or decrement the addressing registers by 2 or 4 instead of 1.

TheREPprefix may be used to repeat the instructionCX(orECX- again, the address size chooses
which) times. TheREPaliasREPE, as well as the differently-encodedREPNE, are both allowed
as well. They behave in the same way asREP.

A.5.178.1 Pseudo-code examples

a16 MOVSBwithout segment override and with Direction Flag clear (UP) is equal to

MOV BYTE [ES:DI], BYTE [SI]
LEA SI, [SI + 1]
LEA DI, [DI + 1]

a16 REP MOVSWwithout segment override and with Direction Flag clear (UP) is equal to

JCXZ @FF

80

@@:
MOV WORD [ES:DI], WORD [SI]
LEA SI, [SI + 2]
LEA DI, [DI + 2]
a16 LOOP @B
@@:

a32 ES MOVSDwith Direction Flag set (DN) is equal to

MOV DWORD [ES:EDI], DWORD [ES:ESI]
LEA ESI, [ESI - 4]
LEA EDI, [EDI - 4]

A.5.179 MOVSD: Move Scalar Double-Precision FP Value

MOVSD xmm1,xmm2/m64 ; F2 0F 10 /r [WILLAMETTE,SSE2]
MOVSD xmm1/m64,xmm2 ; F2 0F 11 /r [WILLAMETTE,SSE2]

MOVSDmoves a double-precision FP value from the source operand to the destination operand.
When the source or destination is a register, the low-order FP value is read or written.

A.5.180 MOVSS: Move Scalar Single-Precision FP Value

MOVSS xmm1,xmm2/m32 ; F3 0F 10 /r [KATMAI,SSE]
MOVSS xmm1/m32,xmm2 ; F3 0F 11 /r [KATMAI,SSE]

MOVSSmoves a single-precision FP value from the source operand to the destination operand.
When the source or destination is a register, the low-order FP value is read or written.

A.5.181 MOVSX, MOVZX: Move Data with Sign or Zero Extend

MOVSX reg16,r/m8 ; o16 0F BE /r [386]
MOVSX reg32,r/m8 ; o32 0F BE /r [386]
MOVSX reg32,r/m16 ; o32 0F BF /r [386]

MOVZX reg16,r/m8 ; o16 0F B6 /r [386]
MOVZX reg32,r/m8 ; o32 0F B6 /r [386]
MOVZX reg32,r/m16 ; o32 0F B7 /r [386]

MOVSXsign-extends its source (second) operand to the length of its destination (first) operand,
and copies the result into the destination operand.MOVZXdoes the same, but zero-extends rather
than sign-extending.

A.5.182 MOVUPD: Move Unaligned Packed Double-Precision FP Values

MOVUPD xmm1,xmm2/mem128 ; 66 0F 10 /r [WILLAMETTE,SSE2]
MOVUPD xmm1/mem128,xmm2 ; 66 0F 11 /r [WILLAMETTE,SSE2]

MOVUPDmoves a double quadword containing 2 packed double-precision FP values from the
source operand to the destination. This instruction makes no assumptions about alignment of
memory operands.

To move data in and out of memory locations that are known to be on 16-byte boundaries, use
theMOVAPDinstruction (section A.5.157).

81

A.5.183 MOVUPS: Move Unaligned Packed Single-Precision FP Values

MOVUPS xmm1,xmm2/mem128 ; 0F 10 /r [KATMAI,SSE]
MOVUPS xmm1/mem128,xmm2 ; 0F 11 /r [KATMAI,SSE]

MOVUPSmoves a double quadword containing 4 packed single-precision FP values from the
source operand to the destination. This instruction makes no assumptions about alignment of
memory operands.

To move data in and out of memory locations that are known to be on 16-byte boundaries, use
theMOVAPSinstruction (section A.5.158).

A.5.184 MUL: Unsigned Integer Multiply

MUL r/m8 ; F6 /4 [8086]
MUL r/m16 ; o16 F7 /4 [8086]
MUL r/m32 ; o32 F7 /4 [386]

MULperforms unsigned integer multiplication. The other operand to the multiplication, and the
destination operand, are implicit, in the following way:

• ForMUL r/m8 , AL is multiplied by the given operand; the product is stored inAX.

• ForMUL r/m16 , AX is multiplied by the given operand; the product is stored inDX:AX.

• For MUL r/m32 , EAX is multiplied by the given operand; the product is stored in
EDX:EAX.

Signed integer multiplication is performed by theIMUL instruction: see section A.5.118.

A.5.185 MULPD: Packed Single-FP Multiply

MULPD xmm1,xmm2/mem128 ; 66 0F 59 /r [WILLAMETTE,SSE2]

MULPDperforms a SIMD multiply of the packed double-precision FP values in both operands,
and stores the results in the destination register.

A.5.186 MULPS: Packed Single-FP Multiply

MULPS xmm1,xmm2/mem128 ; 0F 59 /r [KATMAI,SSE]

MULPSperforms a SIMD multiply of the packed single-precision FP values in both operands,
and stores the results in the destination register.

A.5.187 MULSD: Scalar Single-FP Multiply

MULSD xmm1,xmm2/mem32 ; F2 0F 59 /r [WILLAMETTE,SSE2]

MULSDmultiplies the lowest double-precision FP values of both operands, and stores the result
in the low quadword of xmm1.

A.5.188 MULSS: Scalar Single-FP Multiply

MULSS xmm1,xmm2/mem32 ; F3 0F 59 /r [KATMAI,SSE]

MULSSmultiplies the lowest single-precision FP values of both operands, and stores the result

82

in the low doubleword of xmm1.

A.5.189 NEG, NOT: Two's and Ones' Complement

NEG r/m8 ; F6 /3 [8086]
NEG r/m16 ; o16 F7 /3 [8086]
NEG r/m32 ; o32 F7 /3 [386]

NOT r/m8 ; F6 /2 [8086]
NOT r/m16 ; o16 F7 /2 [8086]
NOT r/m32 ; o32 F7 /2 [386]

NEGreplaces the contents of its operand by the two's complement negation (invert all the bits
and then add one) of the original value.NOT, similarly, performs ones' complement (inverts all
the bits).

NOTdoes not modify any flags.

NEGsets flags like as if running a subtraction where the operand is subtracted from zero. That
means the Carry Flag is cleared byNEGif the operand was zero, and set otherwise. The Zero
Flag is set byNEGaccording to whether the result is zero. If theNEGoperand was zero it means
the result is also zero, and vice versa.

A.5.190 NOP: No Operation

NOP ; 90 [8086]

NOPperforms no operation. Its opcode is the same as that generated byXCHG AX,AXor
XCHG EAX,EAX(depending on the processor mode; see section A.5.333).

A.5.191 OR: Bitwise OR

OR r/m8,reg8 ; 08 /r [8086]
OR r/m16,reg16 ; o16 09 /r [8086]
OR r/m32,reg32 ; o32 09 /r [386]

OR reg8,r/m8 ; 0A /r [8086]
OR reg16,r/m16 ; o16 0B /r [8086]
OR reg32,r/m32 ; o32 0B /r [386]

OR r/m8,imm8 ; 80 /1 ib [8086]
OR r/m16,imm16 ; o16 81 /1 iw [8086]
OR r/m32,imm32 ; o32 81 /1 id [386]

OR r/m16,imm8 ; o16 83 /1 ib [8086]
OR r/m32,imm8 ; o32 83 /1 ib [386]

OR AL,imm8 ; 0C ib [8086]
OR AX,imm16 ; o16 0D iw [8086]
OR EAX,imm32 ; o32 0D id [386]

ORperforms a bitwise OR operation between its two operands (i.e. each bit of the result is 1 if
and only if at least one of the corresponding bits of the two inputs was 1), and stores the result
in the destination (first) operand.

83

In the forms with an 8-bit immediate second operand and a longer first operand, the second
operand is considered to be signed, and is sign-extended to the length of the first operand. The
BYTEqualifier can be used to force NASM to generate this form of the instruction. Recent
versions of NASM automatically optimise to this form if the immediate operand's value is known
during the assembling of that instruction, and fits in the range of a signed byte. The longer variant
can then still be forced using theSTRICT WORDor STRICT DWORDqualifier.

The Carry Flag is cleared byOR. The Zero Flag is set according to whether the result is zero.

The MMX instructionPOR(see section A.5.247) performs the same operation on the 64-bit
MMX registers.

A.5.192 ORPD: Bit-wise Logical OR of Double-Precision FP Data

ORPD xmm1,xmm2/m128 ; 66 0F 56 /r [WILLAMETTE,SSE2]

ORPDreturn a bit-wise logical OR between xmm1 and xmm2/mem, and stores the result in
xmm1. If the source operand is a memory location, it must be aligned to a 16-byte boundary.

A.5.193 ORPS: Bit-wise Logical OR of Single-Precision FP Data

ORPS xmm1,xmm2/m128 ; 0F 56 /r [KATMAI,SSE]

ORPSreturn a bit-wise logical OR between xmm1 and xmm2/mem, and stores the result in
xmm1. If the source operand is a memory location, it must be aligned to a 16-byte boundary.

A.5.194 OUT: Output Data to I/O Port

OUT imm8,AL ; E6 ib [8086]
OUT imm8,AX ; o16 E7 ib [8086]
OUT imm8,EAX ; o32 E7 ib [386]
OUT DX,AL ; EE [8086]
OUT DX,AX ; o16 EF [8086]
OUT DX,EAX ; o32 EF [386]

OUTwrites the contents of the given source register to the specified I/O port. The port number
may be specified as an immediate value if it is between 0 and 255, and otherwise must be stored
in DX. See alsoIN (section A.5.119).

A.5.195 OUTSB, OUTSW, OUTSD: Output String to I/O Port

OUTSB ; 6E [186]
OUTSW ; o16 6F [186]
OUTSD ; o32 6F [386]

OUTSBloads a byte from[DS:SI] or [DS:ESI] and writes it to the I/O port specified in
DX. It then increments or decrements (depending on the direction flag: increments if the flag is
clear, decrements if it is set)SI or ESI .

The register used isSI if the address size is 16 bits, andESI if it is 32 bits. If you need to use an
address size not equal to the currentBITS setting, you can use an explicita16 or a32 prefix.

The segment register used to load from[SI] or [ESI] can be overridden by using a segment
register name as a prefix (for example,ES OUTSB).

84

OUTSWandOUTSDwork in the same way, but they output a word or a doubleword instead of
a byte, and increment or decrement the addressing registers by 2 or 4 instead of 1.

TheREPprefix may be used to repeat the instructionCX(orECX- again, the address size chooses
which) times. TheREPaliasREPE, as well as the differently-encodedREPNE, are both allowed
as well. They behave in the same way asREP.

A.5.195.1 Pseudo-code examples

a16 OUTSBwithout segment override and with Direction Flag clear (UP) is equal to

OUT DX, BYTE [SI]
LEA SI, [SI + 1]

a16 REP OUTSWwithout segment override and with Direction Flag clear (UP) is equal to

JCXZ @FF
@@:
OUT DX, WORD [SI]
LEA SI, [SI + 2]
a16 LOOP @B
@@:

a32 ES OUTSDwith Direction Flag set (DN) is equal to

OUT DX, DWORD [ES:ESI]
LEA ESI, [ESI - 4]

A.5.196 PACKSSDW, PACKSSWB, PACKUSWB: Pack Data

PACKSSDW mm1,mm2/m64 ; 0F 6B /r [PENT,MMX]
PACKSSWB mm1,mm2/m64 ; 0F 63 /r [PENT,MMX]
PACKUSWB mm1,mm2/m64 ; 0F 67 /r [PENT,MMX]

PACKSSDW xmm1,xmm2/m128 ; 66 0F 6B /r [WILLAMETTE,SSE2]
PACKSSWB xmm1,xmm2/m128 ; 66 0F 63 /r [WILLAMETTE,SSE2]
PACKUSWB xmm1,xmm2/m128 ; 66 0F 67 /r [WILLAMETTE,SSE2]

All these instructions start by combining the source and destination operands, and then splitting
the result in smaller sections which it then packs into the destination register. TheMMXversions
pack two 64-bit operands into one 64-bit register, while theSSE versions pack two 128-bit
operands into one 128-bit register.

• PACKSSWBsplits the combined value into words, and then reduces the words to bytes,
using signed saturation. It then packs the bytes into the destination register in the same
order the words were in.

• PACKSSDWperforms the same operation asPACKSSWB, except that it reduces
doublewords to words, then packs them into the destination register.

• PACKUSWBperforms the same operation asPACKSSWB, except that it uses unsigned
saturation when reducing the size of the elements.

To perform signed saturation on a number, it is replaced by the largest signed number (7FFFh
or 7Fh) thatwill fit, and if it is too small it is replaced by the smallest signed number (8000h

85

or 80h) that will fit. To perform unsigned saturation, the input is treated as unsigned, and the
input is replaced by the largest unsigned number that will fit.

A.5.197 PADDB, PADDW, PADDD: Add Packed Integers

PADDB mm1,mm2/m64 ; 0F FC /r [PENT,MMX]
PADDW mm1,mm2/m64 ; 0F FD /r [PENT,MMX]
PADDD mm1,mm2/m64 ; 0F FE /r [PENT,MMX]

PADDB xmm1,xmm2/m128 ; 66 0F FC /r [WILLAMETTE,SSE2]
PADDW xmm1,xmm2/m128 ; 66 0F FD /r [WILLAMETTE,SSE2]
PADDD xmm1,xmm2/m128 ; 66 0F FE /r [WILLAMETTE,SSE2]

PADDxperforms packed addition of the two operands, storing the result in the destination (first)
operand.

• PADDBtreats the operands as packed bytes, and adds each byte individually;

• PADDWtreats the operands as packed words;

• PADDDtreats its operands as packed doublewords.

When an individual result is too large to fit in its destination, it is wrapped around and the low
bits are stored, with the carry bit discarded.

A.5.198 PADDQ: Add Packed Quadword Integers

PADDQ mm1,mm2/m64 ; 0F D4 /r [PENT,MMX]

PADDQ xmm1,xmm2/m128 ; 66 0F D4 /r [WILLAMETTE,SSE2]

PADDQadds the quadwords in the source and destination operands, and stores the result in the
destination register.

When an individual result is too large to fit in its destination, it is wrapped around and the low
bits are stored, with the carry bit discarded.

A.5.199 PADDSB, PADDSW: Add Packed Signed Integers With Saturation

PADDSB mm1,mm2/m64 ; 0F EC /r [PENT,MMX]
PADDSW mm1,mm2/m64 ; 0F ED /r [PENT,MMX]

PADDSB xmm1,xmm2/m128 ; 66 0F EC /r [WILLAMETTE,SSE2]
PADDSW xmm1,xmm2/m128 ; 66 0F ED /r [WILLAMETTE,SSE2]

PADDSxperforms packed addition of the two operands, storing the result in the destination
(first) operand.PADDSBtreats the operands as packed bytes, and adds each byte individually;
andPADDSWtreats the operands as packed words.

When an individual result is too large to fit in its destination, a saturated value is stored. The
resulting value is the value with the largest magnitude of the same sign as the result which will
fit in the available space.

A.5.200 PADDSIW: MMX Packed Addition to Implicit Destination

PADDSIW mmxreg,r/m64 ; 0F 51 /r [CYRIX,MMX]

86

PADDSIW, specific to the Cyrix extensions to the MMX instruction set, performs the same
function asPADDSW, except that the result is placed in an implied register.

To work out the implied register, invert the lowest bit in the register number. So
PADDSIW MM0,MM2would put the result inMM1, but PADDSIW MM1,MM2would put the
result inMM0.

A.5.201 PADDUSB, PADDUSW: Add Packed Unsigned Integers With Saturation

PADDUSB mm1,mm2/m64 ; 0F DC /r [PENT,MMX]
PADDUSW mm1,mm2/m64 ; 0F DD /r [PENT,MMX]

PADDUSB xmm1,xmm2/m128 ; 66 0F DC /r [WILLAMETTE,SSE2]
PADDUSW xmm1,xmm2/m128 ; 66 0F DD /r [WILLAMETTE,SSE2]

PADDUSxperforms packed addition of the two operands, storing the result in the destination
(first) operand.PADDUSBtreats the operands as packed bytes, and adds each byte individually;
andPADDUSWtreats the operands as packed words.

When an individual result is too large to fit in its destination, a saturated value is stored. The
resulting value is the maximum value that will fit in the available space.

A.5.202 PAND, PANDN: MMX Bitwise AND and AND-NOT

PAND mm1,mm2/m64 ; 0F DB /r [PENT,MMX]
PANDN mm1,mm2/m64 ; 0F DF /r [PENT,MMX]

PAND xmm1,xmm2/m128 ; 66 0F DB /r [WILLAMETTE,SSE2]
PANDN xmm1,xmm2/m128 ; 66 0F DF /r [WILLAMETTE,SSE2]

PANDperforms a bitwise AND operation between its two operands (i.e. each bit of the result
is 1 if and only if the corresponding bits of the two inputs were both 1), and stores the result in
the destination (first) operand.

PANDNperforms the same operation, but performs a ones' complement operation on the
destination (first) operand first.

A.5.203 PAUSE: Spin Loop Hint

PAUSE ; F3 90 [WILLAMETTE,SSE2]

PAUSEprovides a hint to the processor that the following code is a spin loop. This improves
processor performance by bypassing possible memory order violations. On older processors,
this instruction operates as aNOP.

A.5.204 PAVEB: MMX Packed Average

PAVEB mmxreg,r/m64 ; 0F 50 /r [CYRIX,MMX]

PAVEB, specific to the Cyrix MMX extensions, treats its two operands as vectors of eight
unsigned bytes, and calculates the average of the corresponding bytes in the operands. The
resulting vector of eight averages is stored in the first operand.

This opcode maps toMOVMSKPS r32, xmmon processors that support the SSE instruction
set.

87

A.5.205 PAVGB PAVGW: Average Packed Integers

PAVGB mm1,mm2/m64 ; 0F E0 /r [KATMAI,MMX]
PAVGW mm1,mm2/m64 ; 0F E3 /r [KATMAI,MMX,SM]

PAVGB xmm1,xmm2/m128 ; 66 0F E0 /r [WILLAMETTE,SSE2]
PAVGW xmm1,xmm2/m128 ; 66 0F E3 /r [WILLAMETTE,SSE2]

PAVGBandPAVGWadd the unsigned data elements of the source operand to the unsigned data
elements of the destination register, then adds 1 to the temporary results. The results of the add
are then each independently right-shifted by one bit position. The high order bits of each element
are filled with the carry bits of the corresponding sum.

• PAVGBoperates on packed unsigned bytes, and

• PAVGWoperates on packed unsigned words.

A.5.206 PAVGUSB: Average of unsigned packed 8-bit values

PAVGUSB mm1,mm2/m64 ; 0F 0F /r BF [PENT,3DNOW]

PAVGUSBadds the unsigned data elements of the source operand to the unsigned data elements
of the destination register, then adds 1 to the temporary results. The results of the add are then
each independently right-shifted by one bit position. The high order bits of each element are
filled with the carry bits of the corresponding sum.

This instruction performs exactly the same operations as thePAVGB MMXinstruction (section
A.5.205).

A.5.207 PCMPxx: Compare Packed Integers.

PCMPEQB mm1,mm2/m64 ; 0F 74 /r [PENT,MMX]
PCMPEQW mm1,mm2/m64 ; 0F 75 /r [PENT,MMX]
PCMPEQD mm1,mm2/m64 ; 0F 76 /r [PENT,MMX]

PCMPGTB mm1,mm2/m64 ; 0F 64 /r [PENT,MMX]
PCMPGTW mm1,mm2/m64 ; 0F 65 /r [PENT,MMX]
PCMPGTD mm1,mm2/m64 ; 0F 66 /r [PENT,MMX]

PCMPEQB xmm1,xmm2/m128 ; 66 0F 74 /r [WILLAMETTE,SSE2]
PCMPEQW xmm1,xmm2/m128 ; 66 0F 75 /r [WILLAMETTE,SSE2]
PCMPEQD xmm1,xmm2/m128 ; 66 0F 76 /r [WILLAMETTE,SSE2]

PCMPGTB xmm1,xmm2/m128 ; 66 0F 64 /r [WILLAMETTE,SSE2]
PCMPGTW xmm1,xmm2/m128 ; 66 0F 65 /r [WILLAMETTE,SSE2]
PCMPGTD xmm1,xmm2/m128 ; 66 0F 66 /r [WILLAMETTE,SSE2]

ThePCMPxxinstructions all treat their operands as vectors of bytes, words, or doublewords;
corresponding elements of the source and destination are compared, and the corresponding
element of the destination (first) operand is set to all zeros or all ones depending on the result
of the comparison.

• PCMPxxBtreats the operands as vectors of bytes;

• PCMPxxWtreats the operands as vectors of words;

88

• PCMPxxDtreats the operands as vectors of doublewords;

• PCMPEQxsets the corresponding element of the destination operand to all ones if the two
elements compared are equal;

• PCMPGTxsets the destination element to all ones if the element of the first (destination)
operand is greater (treated as a signed integer) than that of the second (source) operand.

A.5.208 PDISTIB : MMX Packed Distance and Accumulate with Implied
Register

PDISTIB mm,m64 ; 0F 54 /r [CYRIX,MMX]

PDISTIB , specific to the Cyrix MMX extensions, treats its two input operands as vectors of
eight unsigned bytes. For each byte position, it finds the absolute difference between the bytes
in that position in the two input operands, and adds that value to the byte in the same position
in the implied output register. The addition is saturated to an unsigned byte in the same way as
PADDUSB.

To work out the implied register, invert the lowest bit in the register number. So
PDISTIB MM0,M64 would put the result inMM1, but PDISTIB MM1,M64 would put the
result inMM0.

Note thatPDISTIB cannot take a register as its second source operand.

Operation:

 dstI[0-7] := dstI[0-7] + ABS(src0[0-7] - src1[0-7]),
 dstI[8-15] := dstI[8-15] + ABS(src0[8-15] - src1[8-15]),

 dstI[56-63] := dstI[56-63] + ABS(src0[56-63] - src1[56-63]).

A.5.209 PEXTRW: Extract Word

PEXTRW reg32,mm,imm8 ; 0F C5 /r ib [KATMAI,MMX]
PEXTRW reg32,xmm,imm8 ; 66 0F C5 /r ib [WILLAMETTE,SSE2]

PEXTRWmoves the word in the source register (second operand) that is pointed to by the count
operand (third operand), into the lower half of a 32-bit general purpose register. The upper half
of the register is cleared to all 0s.

When the source operand is anMMXregister, the two least significant bits of the count specify
the source word. When it is anSSE register, the three least significant bits specify the word
location.

A.5.210 PF2ID : Packed Single-Precision FP to Integer Convert

PF2ID mm1,mm2/m64 ; 0F 0F /r 1D [PENT,3DNOW]

PF2ID converts two single-precision FP values in the source operand to signed 32-bit integers,
using truncation, and stores them in the destination operand. Source values that are outside the
range supported by the destination are saturated to the largest absolute value of the same sign.

89

A.5.211 PF2IW: Packed Single-Precision FP to Integer Word Convert

PF2IW mm1,mm2/m64 ; 0F 0F /r 1C [PENT,3DNOW]

PF2IW converts two single-precision FP values in the source operand to signed 16-bit integers,
using truncation, and stores them in the destination operand. Source values that are outside the
range supported by the destination are saturated to the largest absolute value of the same sign.

• In the K6-2 and K6-III, the 16-bit value is zero-extended to 32-bits before storing.

• In the K6-2+, K6-III+ and Athlon processors, the value is sign-extended to 32-bits before
storing.

A.5.212 PFACC: Packed Single-Precision FP Accumulate

PFACC mm1,mm2/m64 ; 0F 0F /r AE [PENT,3DNOW]

PFACCadds the two single-precision FP values from the destination operand together, then
adds the two single-precision FP values from the source operand, and places the results in the
low and high doublewords of the destination operand.

The operation is:

 dst[0-31] := dst[0-31] + dst[32-63],
 dst[32-63] := src[0-31] + src[32-63].

A.5.213 PFADD: Packed Single-Precision FP Addition

PFADD mm1,mm2/m64 ; 0F 0F /r 9E [PENT,3DNOW]

PFADDperforms addition on each of two packed single-precision FP value pairs.

 dst[0-31] := dst[0-31] + src[0-31],
 dst[32-63] := dst[32-63] + src[32-63].

A.5.214 PFCMPxx: Packed Single-Precision FP Compare

PFCMPEQ mm1,mm2/m64 ; 0F 0F /r B0 [PENT,3DNOW]
PFCMPGE mm1,mm2/m64 ; 0F 0F /r 90 [PENT,3DNOW]
PFCMPGT mm1,mm2/m64 ; 0F 0F /r A0 [PENT,3DNOW]

The PFCMPxx instructions compare the packed single-point FP values in the source and
destination operands, and set the destination according to the result. If the condition is true, the
destination is set to all 1s, otherwise it's set to all 0s.

• PFCMPEQtests whether dst == src;

• PFCMPGEtests whether dst >= src;

• PFCMPGTtests whether dst > src.

A.5.215 PFMAX: Packed Single-Precision FP Maximum

PFMAX mm1,mm2/m64 ; 0F 0F /r A4 [PENT,3DNOW]

PFMAXreturns the higher of each pair of single-precision FP values. If the higher value is zero,
it is returned as positive zero.

90

A.5.216 PFMIN: Packed Single-Precision FP Minimum

PFMIN mm1,mm2/m64 ; 0F 0F /r 94 [PENT,3DNOW]

PFMIN returns the lower of each pair of single-precision FP values. If the lower value is zero,
it is returned as positive zero.

A.5.217 PFMUL: Packed Single-Precision FP Multiply

PFMUL mm1,mm2/m64 ; 0F 0F /r B4 [PENT,3DNOW]

PFMULreturns the product of each pair of single-precision FP values.

 dst[0-31] := dst[0-31] * src[0-31],
 dst[32-63] := dst[32-63] * src[32-63].

A.5.218 PFNACC: Packed Single-Precision FP Negative Accumulate

PFNACC mm1,mm2/m64 ; 0F 0F /r 8A [PENT,3DNOW]

PFNACCperforms a negative accumulate of the two single-precision FP values in the source
and destination registers. The result of the accumulate from the destination register is stored in
the low doubleword of the destination, and the result of the source accumulate is stored in the
high doubleword of the destination register.

The operation is:

 dst[0-31] := dst[0-31] - dst[32-63],
 dst[32-63] := src[0-31] - src[32-63].

A.5.219 PFPNACC: Packed Single-Precision FP Mixed Accumulate

PFPNACC mm1,mm2/m64 ; 0F 0F /r 8E [PENT,3DNOW]

PFPNACCperforms a positive accumulate of the two single-precision FP values in the source
register and a negative accumulate of the destination register. The result of the accumulate from
the destination register is stored in the low doubleword of the destination, and the result of the
source accumulate is stored in the high doubleword of the destination register.

The operation is:

 dst[0-31] := dst[0-31] - dst[32-63],
 dst[32-63] := src[0-31] + src[32-63].

A.5.220 PFRCP: Packed Single-Precision FP Reciprocal Approximation

PFRCP mm1,mm2/m64 ; 0F 0F /r 96 [PENT,3DNOW]

PFRCPperforms a low precision estimate of the reciprocal of the low-order single-precision
FP value in the source operand, storing the result in both halves of the destination register. The
result is accurate to 14 bits.

For higher precision reciprocals, this instruction should be followed by two more instructions:
PFRCPIT1 (section A.5.221) andPFRCPIT2 (section A.5.221). This will result in a 24-bit
accuracy. For more details, see the AMD 3DNow! technology manual.

91

A.5.221 PFRCPIT1: Packed Single-Precision FP Reciprocal, First Iteration
Step

PFRCPIT1 mm1,mm2/m64 ; 0F 0F /r A6 [PENT,3DNOW]

PFRCPIT1 performs the first intermediate step in the calculation of the reciprocal of a single-
precision FP value. The first source value (mm1is the original value, and the second source value
(mm2/m64is the result of aPFRCPinstruction.

For the final step in a reciprocal, returning the full 24-bit accuracy of a single-precision FP
value, seePFRCPIT2 (section A.5.222). For more details, see the AMD 3DNow! technology
manual.

A.5.222 PFRCPIT2: Packed Single-Precision FP Reciprocal/ Reciprocal
Square Root, Second Iteration Step

PFRCPIT2 mm1,mm2/m64 ; 0F 0F /r B6 [PENT,3DNOW]

PFRCPIT2 performs the second and final intermediate step in the calculation of a reciprocal or
reciprocal square root, refining the values returned by thePFRCPandPFRSQRTinstructions,
respectively.

The first source value (mm1) is the output of either aPFRCPIT1 or aPFRSQIT1 instruction,
and the second source is the output of either thePFRCPor thePFRSQRTinstruction. For more
details, see the AMD 3DNow! technology manual.

A.5.223 PFRSQIT1: Packed Single-Precision FP Reciprocal Square Root, First
Iteration Step

PFRSQIT1 mm1,mm2/m64 ; 0F 0F /r A7 [PENT,3DNOW]

PFRSQIT1performs the first intermediate step in the calculation of the reciprocal square root of
a single-precision FP value. The first source value (mm1is the square of the result of aPFRSQRT
instruction, and the second source value (mm2/m64is the original value.

For the final step in a calculation, returning the full 24-bit accuracy of a single-precision FP
value, seePFRCPIT2 (section A.5.222). For more details, see the AMD 3DNow! technology
manual.

A.5.224 PFRSQRT: Packed Single-Precision FP Reciprocal Square Root
Approximation

PFRSQRT mm1,mm2/m64 ; 0F 0F /r 97 [PENT,3DNOW]

PFRSQRTperforms a low precision estimate of the reciprocal square root of the low-order
single-precision FP value in the source operand, storing the result in both halves of the
destination register. The result is accurate to 15 bits.

For higher precision reciprocals, this instruction should be followed by two more instructions:
PFRSQIT1 (section A.5.223) andPFRCPIT2 (section A.5.221). This will result in a 24-bit
accuracy. For more details, see the AMD 3DNow! technology manual.

92

A.5.225 PFSUB: Packed Single-Precision FP Subtract

PFSUB mm1,mm2/m64 ; 0F 0F /r 9A [PENT,3DNOW]

PFSUBsubtracts the single-precision FP values in the source from those in the destination, and
stores the result in the destination operand.

 dst[0-31] := dst[0-31] - src[0-31],
 dst[32-63] := dst[32-63] - src[32-63].

A.5.226 PFSUBR: Packed Single-Precision FP Reverse Subtract

PFSUBR mm1,mm2/m64 ; 0F 0F /r AA [PENT,3DNOW]

PFSUBRsubtracts the single-precision FP values in the destination from those in the source,
and stores the result in the destination operand.

 dst[0-31] := src[0-31] - dst[0-31],
 dst[32-63] := src[32-63] - dst[32-63].

A.5.227 PI2FD : Packed Doubleword Integer to Single-Precision FP Convert

PI2FD mm1,mm2/m64 ; 0F 0F /r 0D [PENT,3DNOW]

PF2ID converts two signed 32-bit integers in the source operand to single-precision FP values,
using truncation of significant digits, and stores them in the destination operand.

A.5.228 PI2FW: Packed Word Integer to Single-Precision FP Convert

PI2FW mm1,mm2/m64 ; 0F 0F /r 0C [PENT,3DNOW]

PI2FW converts two signed 16-bit integers in the source operand to single-precision FP values,
and stores them in the destination operand. The input values are in the low word of each
doubleword.

A.5.229 PINSRW: Insert Word

PINSRW mm,r16/r32/m16,imm8 ;0F C4 /r ib [KATMAI,MMX]
PINSRW xmm,r16/r32/m16,imm8 ;66 0F C4 /r ib [WILLAMETTE,SSE2]

PINSRWloads a word from a 16-bit register (or the low half of a 32-bit register), or from
memory, and loads it to the word position in the destination register, pointed at by the count
operand (third operand). If the destination is anMMXregister, the low two bits of the count byte
are used, if it is anXMMregister the low 3 bits are used. The insertion is done in such a way that
the other words from the destination register are left untouched.

A.5.230 PMACHRIW: Packed Multiply and Accumulate with Rounding

PMACHRIW mm,m64 ; 0F 5E /r [CYRIX,MMX]

PMACHRIWtakes two packed 16-bit integer inputs, multiplies the values in the inputs, rounds
on bit 15 of each result, then adds bits 15-30 of each result to the corresponding position of the
implieddestination register.

93

The operation of this instruction is:

 dstI[0-15] := dstI[0-15] + (mm[0-15] *m64[0-15]
 + 0x00004000)[15-30],
 dstI[16-31] := dstI[16-31] + (mm[16-31]*m64[16-31]
 + 0x00004000)[15-30],
 dstI[32-47] := dstI[32-47] + (mm[32-47]*m64[32-47]
 + 0x00004000)[15-30],
 dstI[48-63] := dstI[48-63] + (mm[48-63]*m64[48-63]
 + 0x00004000)[15-30].

Note thatPMACHRIWcannot take a register as its second source operand.

A.5.231 PMADDWD: MMX Packed Multiply and Add

PMADDWD mm1,mm2/m64 ; 0F F5 /r [PENT,MMX]
PMADDWD xmm1,xmm2/m128 ; 66 0F F5 /r [WILLAMETTE,SSE2]

PMADDWDtreats its two inputs as vectors of signed words. It multiplies corresponding elements
of the two operands, giving doubleword results. These are then added together in pairs and stored
in the destination operand.

The operation of this instruction is:

 dst[0-31] := (dst[0-15] * src[0-15])
 + (dst[16-31] * src[16-31]);
 dst[32-63] := (dst[32-47] * src[32-47])
 + (dst[48-63] * src[48-63]);

The following apply to theSSEversion of the instruction:

 dst[64-95] := (dst[64-79] * src[64-79])
 + (dst[80-95] * src[80-95]);
 dst[96-127] := (dst[96-111] * src[96-111])
 + (dst[112-127] * src[112-127]).

A.5.232 PMAGW: MMX Packed Magnitude

PMAGW mm1,mm2/m64 ; 0F 52 /r [CYRIX,MMX]

PMAGW, specific to the Cyrix MMX extensions, treats both its operands as vectors of four signed
words. It compares the absolute values of the words in corresponding positions, and sets each
word of the destination (first) operand to whichever of the two words in that position had the
larger absolute value.

A.5.233 PMAXSW: Packed Signed Integer Word Maximum

PMAXSW mm1,mm2/m64 ; 0F EE /r [KATMAI,MMX]
PMAXSW xmm1,xmm2/m128 ; 66 0F EE /r [WILLAMETTE,SSE2]

PMAXSWcompares each pair of words in the two source operands, and for each pair it stores
the maximum value in the destination register.

94

A.5.234 PMAXUB: Packed Unsigned Integer Byte Maximum

PMAXUB mm1,mm2/m64 ; 0F DE /r [KATMAI,MMX]
PMAXUB xmm1,xmm2/m128 ; 66 0F DE /r [WILLAMETTE,SSE2]

PMAXUBcompares each pair of bytes in the two source operands, and for each pair it stores the
maximum value in the destination register.

A.5.235 PMINSW: Packed Signed Integer Word Minimum

PMINSW mm1,mm2/m64 ; 0F EA /r [KATMAI,MMX]
PMINSW xmm1,xmm2/m128 ; 66 0F EA /r [WILLAMETTE,SSE2]

PMINSWcompares each pair of words in the two source operands, and for each pair it stores
the minimum value in the destination register.

A.5.236 PMINUB: Packed Unsigned Integer Byte Minimum

PMINUB mm1,mm2/m64 ; 0F DA /r [KATMAI,MMX]
PMINUB xmm1,xmm2/m128 ; 66 0F DA /r [WILLAMETTE,SSE2]

PMINUBcompares each pair of bytes in the two source operands, and for each pair it stores the
minimum value in the destination register.

A.5.237 PMOVMSKB: Move Byte Mask To Integer

PMOVMSKB reg32,mm ; 0F D7 /r [KATMAI,MMX]
PMOVMSKB reg32,xmm ; 66 0F D7 /r [WILLAMETTE,SSE2]

PMOVMSKBreturns an 8-bit or 16-bit mask formed of the most significant bits of each byte of
source operand (8-bits for anMMXregister, 16-bits for anXMMregister).

A.5.238 PMULHRWC, PMULHRIW: Multiply Packed 16-bit Integers With
Rounding, and Store High Word

PMULHRWC mm1,mm2/m64 ; 0F 59 /r [CYRIX,MMX]
PMULHRIW mm1,mm2/m64 ; 0F 5D /r [CYRIX,MMX]

These instructions take two packed 16-bit integer inputs, multiply the values in the inputs, round
on bit 15 of each result, then store bits 15-30 of each result to the corresponding position of the
destination register.

• ForPMULHRWC, the destination is the first source operand.

• For PMULHRIW, the destination is an implied register (worked out as described for
PADDSIW(section A.5.200)).

The operation of this instruction is:

 dst[0-15] := (src1[0-15] *src2[0-15] + 0x00004000)[15-30]
 dst[16-31] := (src1[16-31]*src2[16-31] + 0x00004000)[15-30]
 dst[32-47] := (src1[32-47]*src2[32-47] + 0x00004000)[15-30]
 dst[48-63] := (src1[48-63]*src2[48-63] + 0x00004000)[15-30]

See alsoPMULHRWA(section A.5.239) for a 3DNow! version of this instruction.

95

A.5.239 PMULHRWA: Multiply Packed 16-bit Integers With Rounding, and Store
High Word

PMULHRWA mm1,mm2/m64 ; 0F 0F /r B7 [PENT,3DNOW]

PMULHRWAtakes two packed 16-bit integer inputs, multiplies the values in the inputs, rounds
on bit 16 of each result, then stores bits 16-31 of each result to the corresponding position of
the destination register.

The operation of this instruction is:

 dst[0-15] := (src1[0-15] *src2[0-15] + 0x00008000)[16-31];
 dst[16-31] := (src1[16-31]*src2[16-31] + 0x00008000)[16-31];
 dst[32-47] := (src1[32-47]*src2[32-47] + 0x00008000)[16-31];
 dst[48-63] := (src1[48-63]*src2[48-63] + 0x00008000)[16-31].

See alsoPMULHRWC(section A.5.238) for a Cyrix version of this instruction.

A.5.240 PMULHUW: Multiply Packed 16-bit Integers, and Store High Word

PMULHUW mm1,mm2/m64 ; 0F E4 /r [KATMAI,MMX]
PMULHUW xmm1,xmm2/m128 ; 66 0F E4 /r [WILLAMETTE,SSE2]

PMULHUWtakes two packed unsigned 16-bit integer inputs, multiplies the values in the inputs,
then stores bits 16-31 of each result to the corresponding position of the destination register.

A.5.241 PMULHW, PMULLW: Multiply Packed 16-bit Integers, and Store

PMULHW mm1,mm2/m64 ; 0F E5 /r [PENT,MMX]
PMULLW mm1,mm2/m64 ; 0F D5 /r [PENT,MMX]

PMULHW xmm1,xmm2/m128 ; 66 0F E5 /r [WILLAMETTE,SSE2]
PMULLW xmm1,xmm2/m128 ; 66 0F D5 /r [WILLAMETTE,SSE2]

PMULxWtakes two packed unsigned 16-bit integer inputs, and multiplies the values in the inputs,
forming doubleword results.

• PMULHWthen stores the top 16 bits of each doubleword in the destination (first) operand;

• PMULLWstores the bottom 16 bits of each doubleword in the destination operand.

A.5.242 PMULUDQ: Multiply Packed Unsigned 32-bit Integers, and Store.

PMULUDQ mm1,mm2/m64 ; 0F F4 /r [WILLAMETTE,SSE2]
PMULUDQ xmm1,xmm2/m128 ; 66 0F F4 /r [WILLAMETTE,SSE2]

PMULUDQtakes two packed unsigned 32-bit integer inputs, and multiplies the values in the
inputs, forming quadword results. The source is either an unsigned doubleword in the low
doubleword of a 64-bit operand, or it's two unsigned doublewords in the first and third
doublewords of a 128-bit operand. This produces either one or two 64-bit results, which are
stored in the respective quadword locations of the destination register.

The operation is:

 dst[0-63] := dst[0-31] * src[0-31];
 dst[64-127] := dst[64-95] * src[64-95].

96

A.5.243 PMVccZB: MMX Packed Conditional Move

PMVZB mmxreg,mem64 ; 0F 58 /r [CYRIX,MMX]
PMVNZB mmxreg,mem64 ; 0F 5A /r [CYRIX,MMX]
PMVLZB mmxreg,mem64 ; 0F 5B /r [CYRIX,MMX]
PMVGEZB mmxreg,mem64 ; 0F 5C /r [CYRIX,MMX]

These instructions, specific to the Cyrix MMX extensions, perform parallel conditional moves.
The two input operands are treated as vectors of eight bytes. Each byte of the destination (first)
operand is either written from the corresponding byte of the source (second) operand, or left
alone, depending on the value of the byte in theimpliedoperand (specified in the same way as
PADDSIW, in section A.5.200).

• PMVZBperforms each move if the corresponding byte in the implied operand is zero;

• PMVNZBmoves if the byte is non-zero;

• PMVLZBmoves if the byte is less than zero;

• PMVGEZBmoves if the byte is greater than or equal to zero.

Note that these instructions cannot take a register as their second source operand.

A.5.244 POP: Pop Data from Stack

POP reg16 ; o16 58+r [8086]
POP reg32 ; o32 58+r [386]

POP r/m16 ; o16 8F /0 [8086]
POP r/m32 ; o32 8F /0 [386]

POP CS ; 0F [8086,UNDOC]
POP DS ; 1F [8086]
POP ES ; 07 [8086]
POP SS ; 17 [8086]
POP FS ; 0F A1 [386]
POP GS ; 0F A9 [386]

POPloads a value from the stack (from[SS:SP] or [SS:ESP]) and then increments the stack
pointer.

The address-size attribute of the instruction determines whetherSPor ESPis used as the stack
pointer: to deliberately override the default given by theBITS setting, you can use ana16 or
a32 prefix.

The operand-size attribute of the instruction determines whether the stack pointer is incremented
by 2 or 4: this means that segment register pops inBITS 32 mode will pop 4 bytes off the
stack and discard the upper two of them. If you need to override that, you can use ano16 or
o32 prefix.

The above opcode listings give two forms for general-purpose register pop instructions: for
example,POP BXhas the two forms5B and8F C3. NASM will always generate the shorter
form when givenPOP BX. NDISASM will disassemble both.

POP CSis not a documented instruction, and is not supported on any processor above the 8086

97

(since they use0Fh as an opcode prefix for instruction set extensions). However, at least some
8086 processors do support it, and so NASM generates it for completeness. Current versions of
NASM silently accept this instruction.

A.5.245 POPAx: Pop All General-Purpose Registers

POPA ; 61 [186]
POPAW ; o16 61 [186]
POPAD ; o32 61 [386]

• POPAWpops a word from the stack into each of, successively,DI , SI , BP, nothing (it
discards a word from the stack which was a placeholder forSP), BX, DX, CXandAX. It is
intended to reverse the operation ofPUSHAW(see section A.5.264), but it ignores the value
for SP that was pushed on the stack byPUSHAW.

• POPADpops twice as much data, and places the results inEDI , ESI , EBP, nothing
(placeholder forESP), EBX, EDX, ECXandEAX. It reverses the operation ofPUSHAD.

POPAis an alias mnemonic for eitherPOPAWorPOPAD, depending on the currentBITS setting.

Note that the registers are popped in reverse order of their numeric values in opcodes (see section
A.2.1).

A.5.246 POPFx: Pop Flags Register

POPF ; 9D [8086]
POPFW ; o16 9D [8086]
POPFD ; o32 9D [386]

• POPFWpops a word from the stack and stores it in the bottom 16 bits of the flags register
(or the whole flags register, on processors below a 386).

• POPFDpops a doubleword and stores it in the entire flags register.

POPFis an alias mnemonic for eitherPOPFWorPOPFD, depending on the currentBITS setting.

See alsoPUSHF(section A.5.265).

A.5.247 POR: MMX Bitwise OR

POR mm1,mm2/m64 ; 0F EB /r [PENT,MMX]
POR xmm1,xmm2/m128 ; 66 0F EB /r [WILLAMETTE,SSE2]

PORperforms a bitwise OR operation between its two operands (i.e. each bit of the result is 1 if
and only if at least one of the corresponding bits of the two inputs was 1), and stores the result
in the destination (first) operand.

A.5.248 PREFETCH: Prefetch Data Into Caches

PREFETCH mem8 ; 0F 0D /0 [PENT,3DNOW]
PREFETCHW mem8 ; 0F 0D /1 [PENT,3DNOW]

PREFETCHandPREFETCHWfetch the line of data from memory that contains the specified
byte.PREFETCHWperforms differently on the Athlon to earlier processors.

For more details, see the 3DNow! Technology Manual.

98

A.5.249 PREFETCHh: Prefetch Data Into Caches

PREFETCHNTA m8 ; 0F 18 /0 [KATMAI]
PREFETCHT0 m8 ; 0F 18 /1 [KATMAI]
PREFETCHT1 m8 ; 0F 18 /2 [KATMAI]
PREFETCHT2 m8 ; 0F 18 /3 [KATMAI]

ThePREFETCHhinstructions fetch the line of data from memory that contains the specified
byte. It is placed in the cache according to rules specified by locality hintsh:

The hints are:

• T0 (temporal data) - prefetch data into all levels of the cache hierarchy.

• T1 (temporal data with respect to first level cache) - prefetch data into level 2 cache and
higher.

• T2 (temporal data with respect to second level cache) - prefetch data into level 2 cache and
higher.

• NTA(non-temporal data with respect to all cache levels) - prefetch data into non-temporal
cache structure and into a location close to the processor, minimizing cache pollution.

Note that this group of instructions doesn't provide a guarantee that the data will be in the cache
when it is needed. For more details, see the Intel IA32 Software Developer Manual, Volume 2.

A.5.250 PSADBW: Packed Sum of Absolute Differences

PSADBW mm1,mm2/m64 ; 0F F6 /r [KATMAI,MMX]
PSADBW xmm1,xmm2/m128 ; 66 0F F6 /r [WILLAMETTE,SSE2]

PSADBWThe PSADBW instruction computes the absolute value of the difference of the packed
unsigned bytes in the two source operands. These differences are then summed to produce a word
result in the lower 16-bit field of the destination register; the rest of the register is cleared. The
destination operand is anMMXor anXMMregister. The source operand can either be a register
or a memory operand.

A.5.251 PSHUFD: Shuffle Packed Doublewords

PSHUFD xmm1,xmm2/m128,imm8 ; 66 0F 70 /r ib [WILLAMETTE,SSE2]

PSHUFDshuffles the doublewords in the source (second) operand according to the encoding
specified by imm8, and stores the result in the destination (first) operand.

Bits 0 and 1 of imm8 encode the source position of the doubleword to be copied to position 0 in
the destination operand. Bits 2 and 3 encode for position 1, bits 4 and 5 encode for position 2,
and bits 6 and 7 encode for position 3. For example, an encoding of 10 in bits 0 and 1 of imm8
indicates that the doubleword at bits 64-95 of the source operand will be copied to bits 0-31 of
the destination.

A.5.252 PSHUFHW: Shuffle Packed High Words

PSHUFHW xmm1,xmm2/m128,imm8 ; F3 0F 70 /r ib [WILLAMETTE,SSE2]

PSHUFWshuffles the words in the high quadword of the source (second) operand according to

99

the encoding specified by imm8, and stores the result in the high quadword of the destination
(first) operand.

The operation of this instruction is similar to thePSHUFWinstruction, except that the source
and destination are the top quadword of a 128-bit operand, instead of being 64-bit operands.
The low quadword is copied from the source to the destination without any changes.

A.5.253 PSHUFLW: Shuffle Packed Low Words

PSHUFLW xmm1,xmm2/m128,imm8 ; F2 0F 70 /r ib [WILLAMETTE,SSE2]

PSHUFLWshuffles the words in the low quadword of the source (second) operand according to
the encoding specified by imm8, and stores the result in the low quadword of the destination
(first) operand.

The operation of this instruction is similar to thePSHUFWinstruction, except that the source
and destination are the low quadword of a 128-bit operand, instead of being 64-bit operands.
The high quadword is copied from the source to the destination without any changes.

A.5.254 PSHUFW: Shuffle Packed Words

PSHUFW mm1,mm2/m64,imm8 ; 0F 70 /r ib [KATMAI,MMX]

PSHUFWshuffles the words in the source (second) operand according to the encoding specified
by imm8, and stores the result in the destination (first) operand.

Bits 0 and 1 of imm8 encode the source position of the word to be copied to position 0 in the
destination operand. Bits 2 and 3 encode for position 1, bits 4 and 5 encode for position 2, and
bits 6 and 7 encode for position 3. For example, an encoding of 10 in bits 0 and 1 of imm8
indicates that the word at bits 32-47 of the source operand will be copied to bits 0-15 of the
destination.

A.5.255 PSLLx: Packed Data Bit Shift Left Logical

PSLLW mm1,mm2/m64 ; 0F F1 /r [PENT,MMX]
PSLLW mm,imm8 ; 0F 71 /6 ib [PENT,MMX]

PSLLW xmm1,xmm2/m128 ; 66 0F F1 /r [WILLAMETTE,SSE2]
PSLLW xmm,imm8 ; 66 0F 71 /6 ib [WILLAMETTE,SSE2]

PSLLD mm1,mm2/m64 ; 0F F2 /r [PENT,MMX]
PSLLD mm,imm8 ; 0F 72 /6 ib [PENT,MMX]

PSLLD xmm1,xmm2/m128 ; 66 0F F2 /r [WILLAMETTE,SSE2]
PSLLD xmm,imm8 ; 66 0F 72 /6 ib [WILLAMETTE,SSE2]

PSLLQ mm1,mm2/m64 ; 0F F3 /r [PENT,MMX]
PSLLQ mm,imm8 ; 0F 73 /6 ib [PENT,MMX]

PSLLQ xmm1,xmm2/m128 ; 66 0F F3 /r [WILLAMETTE,SSE2]
PSLLQ xmm,imm8 ; 66 0F 73 /6 ib [WILLAMETTE,SSE2]

PSLLDQ xmm1,imm8 ; 66 0F 73 /7 ib [WILLAMETTE,SSE2]

PSLLx performs logical left shifts of the data elements in the destination (first) operand, moving

100

each bit in the separate elements left by the number of bits specified in the source (second)
operand, clearing the low-order bits as they are vacated.PSLLDQshifts bytes, not bits.

• PSLLWshifts word sized elements.

• PSLLDshifts doubleword sized elements.

• PSLLQshifts quadword sized elements.

• PSLLDQshifts double quadword sized elements.

A.5.256 PSRAx: Packed Data Bit Shift Right Arithmetic

PSRAW mm1,mm2/m64 ; 0F E1 /r [PENT,MMX]
PSRAW mm,imm8 ; 0F 71 /4 ib [PENT,MMX]

PSRAW xmm1,xmm2/m128 ; 66 0F E1 /r [WILLAMETTE,SSE2]
PSRAW xmm,imm8 ; 66 0F 71 /4 ib [WILLAMETTE,SSE2]

PSRAD mm1,mm2/m64 ; 0F E2 /r [PENT,MMX]
PSRAD mm,imm8 ; 0F 72 /4 ib [PENT,MMX]

PSRAD xmm1,xmm2/m128 ; 66 0F E2 /r [WILLAMETTE,SSE2]
PSRAD xmm,imm8 ; 66 0F 72 /4 ib [WILLAMETTE,SSE2]

PSRAxperforms arithmetic right shifts of the data elements in the destination (first) operand,
moving each bit in the separate elements right by the number of bits specified in the source
(second) operand, setting the high-order bits to the value of the original sign bit.

• PSRAWshifts word sized elements.

• PSRADshifts doubleword sized elements.

A.5.257 PSRLx: Packed Data Bit Shift Right Logical

PSRLW mm1,mm2/m64 ; 0F D1 /r [PENT,MMX]
PSRLW mm,imm8 ; 0F 71 /2 ib [PENT,MMX]

PSRLW xmm1,xmm2/m128 ; 66 0F D1 /r [WILLAMETTE,SSE2]
PSRLW xmm,imm8 ; 66 0F 71 /2 ib [WILLAMETTE,SSE2]

PSRLD mm1,mm2/m64 ; 0F D2 /r [PENT,MMX]
PSRLD mm,imm8 ; 0F 72 /2 ib [PENT,MMX]

PSRLD xmm1,xmm2/m128 ; 66 0F D2 /r [WILLAMETTE,SSE2]
PSRLD xmm,imm8 ; 66 0F 72 /2 ib [WILLAMETTE,SSE2]

PSRLQ mm1,mm2/m64 ; 0F D3 /r [PENT,MMX]
PSRLQ mm,imm8 ; 0F 73 /2 ib [PENT,MMX]

PSRLQ xmm1,xmm2/m128 ; 66 0F D3 /r [WILLAMETTE,SSE2]
PSRLQ xmm,imm8 ; 66 0F 73 /2 ib [WILLAMETTE,SSE2]

PSRLDQ xmm1,imm8 ; 66 0F 73 /3 ib [WILLAMETTE,SSE2]

PSRLx performs logical right shifts of the data elements in the destination (first) operand,
moving each bit in the separate elements right by the number of bits specified in the source

101

(second) operand, clearing the high-order bits as they are vacated.PSRLDQshifts bytes, not
bits.

• PSRLWshifts word sized elements.

• PSRLDshifts doubleword sized elements.

• PSRLQshifts quadword sized elements.

• PSRLDQshifts double quadword sized elements.

A.5.258 PSUBx: Subtract Packed Integers

PSUBB mm1,mm2/m64 ; 0F F8 /r [PENT,MMX]
PSUBW mm1,mm2/m64 ; 0F F9 /r [PENT,MMX]
PSUBD mm1,mm2/m64 ; 0F FA /r [PENT,MMX]
PSUBQ mm1,mm2/m64 ; 0F FB /r [WILLAMETTE,SSE2]

PSUBB xmm1,xmm2/m128 ; 66 0F F8 /r [WILLAMETTE,SSE2]
PSUBW xmm1,xmm2/m128 ; 66 0F F9 /r [WILLAMETTE,SSE2]
PSUBD xmm1,xmm2/m128 ; 66 0F FA /r [WILLAMETTE,SSE2]
PSUBQ xmm1,xmm2/m128 ; 66 0F FB /r [WILLAMETTE,SSE2]

PSUBxsubtracts packed integers in the source operand from those in the destination operand.
It doesn't differentiate between signed and unsigned integers, and doesn't set any of the flags.

• PSUBBoperates on byte sized elements.

• PSUBWoperates on word sized elements.

• PSUBDoperates on doubleword sized elements.

• PSUBQoperates on quadword sized elements.

A.5.259 PSUBSxx, PSUBUSx: Subtract Packed Integers With Saturation

PSUBSB mm1,mm2/m64 ; 0F E8 /r [PENT,MMX]
PSUBSW mm1,mm2/m64 ; 0F E9 /r [PENT,MMX]

PSUBSB xmm1,xmm2/m128 ; 66 0F E8 /r [WILLAMETTE,SSE2]
PSUBSW xmm1,xmm2/m128 ; 66 0F E9 /r [WILLAMETTE,SSE2]

PSUBUSB mm1,mm2/m64 ; 0F D8 /r [PENT,MMX]
PSUBUSW mm1,mm2/m64 ; 0F D9 /r [PENT,MMX]

PSUBUSB xmm1,xmm2/m128 ; 66 0F D8 /r [WILLAMETTE,SSE2]
PSUBUSW xmm1,xmm2/m128 ; 66 0F D9 /r [WILLAMETTE,SSE2]

PSUBSxand PSUBUSxsubtracts packed integers in the source operand from those in the
destination operand, and use saturation for results that are outside the range supported by the
destination operand.

• PSUBSBoperates on signed bytes, and uses signed saturation on the results.

• PSUBSWoperates on signed words, and uses signed saturation on the results.

102

• PSUBUSBoperates on unsigned bytes, and uses signed saturation on the results.

• PSUBUSWoperates on unsigned words, and uses signed saturation on the results.

A.5.260 PSUBSIW: MMX Packed Subtract with Saturation to Implied
Destination

PSUBSIW mm1,mm2/m64 ; 0F 55 /r [CYRIX,MMX]

PSUBSIW, specific to the Cyrix extensions to the MMX instruction set, performs the same
function asPSUBSW, except that the result is not placed in the register specified by the first
operand, but instead in the implied destination register, specified as forPADDSIW(section
A.5.200).

A.5.261 PSWAPD: Swap Packed Data

PSWAPD mm1,mm2/m64 ; 0F 0F /r BB [PENT,3DNOW]

PSWAPDswaps the packed doublewords in the source operand, and stores the result in the
destination operand.

In theK6-2 andK6-III processors, this opcode uses the mnemonicPSWAPW, and it swaps
the order of words when copying from the source to the destination.

The operation in theK6-2 andK6-III processors is

 dst[0-15] = src[48-63];
 dst[16-31] = src[32-47];
 dst[32-47] = src[16-31];
 dst[48-63] = src[0-15].

The operation in theK6-x+ , ATHLONand later processors is:

 dst[0-31] = src[32-63];
 dst[32-63] = src[0-31].

A.5.262 PUNPCKxxx: Unpack and Interleave Data

PUNPCKHBW mm1,mm2/m64 ; 0F 68 /r [PENT,MMX]
PUNPCKHWD mm1,mm2/m64 ; 0F 69 /r [PENT,MMX]
PUNPCKHDQ mm1,mm2/m64 ; 0F 6A /r [PENT,MMX]

PUNPCKHBW xmm1,xmm2/m128 ; 66 0F 68 /r [WILLAMETTE,SSE2]
PUNPCKHWD xmm1,xmm2/m128 ; 66 0F 69 /r [WILLAMETTE,SSE2]
PUNPCKHDQ xmm1,xmm2/m128 ; 66 0F 6A /r [WILLAMETTE,SSE2]
PUNPCKHQDQ xmm1,xmm2/m128 ; 66 0F 6D /r [WILLAMETTE,SSE2]

PUNPCKLBW mm1,mm2/m32 ; 0F 60 /r [PENT,MMX]
PUNPCKLWD mm1,mm2/m32 ; 0F 61 /r [PENT,MMX]
PUNPCKLDQ mm1,mm2/m32 ; 0F 62 /r [PENT,MMX]

PUNPCKLBW xmm1,xmm2/m128 ; 66 0F 60 /r [WILLAMETTE,SSE2]
PUNPCKLWD xmm1,xmm2/m128 ; 66 0F 61 /r [WILLAMETTE,SSE2]

103

PUNPCKLDQ xmm1,xmm2/m128 ; 66 0F 62 /r [WILLAMETTE,SSE2]
PUNPCKLQDQ xmm1,xmm2/m128 ; 66 0F 6C /r [WILLAMETTE,SSE2]

PUNPCKxxall treat their operands as vectors, and produce a new vector generated by
interleaving elements from the two inputs. ThePUNPCKHxxinstructions start by throwing away
the bottom half of each input operand, and thePUNPCKLxxinstructions throw away the top
half.

The remaining elements, are then interleaved into the destination, alternating elements from the
second (source) operand and the first (destination) operand: so the leftmost part of each element
in the result always comes from the second operand, and the rightmost from the destination.

• PUNPCKxBWworks a byte at a time, producing word sized output elements.

• PUNPCKxWDworks a word at a time, producing doubleword sized output elements.

• PUNPCKxDQworks a doubleword at a time, producing quadword sized output elements.

• PUNPCKxQDQworks a quadword at a time, producing double quadword sized output
elements.

So, for example, forMMXoperands, if the first operand held0x7A6A5A4A3A2A1A0A and the
second held0x7B6B5B4B3B2B1B0B, then:

• PUNPCKHBWwould return0x7B7A6B6A5B5A4B4A.

• PUNPCKHWDwould return0x7B6B7A6A5B4B5A4A.

• PUNPCKHDQwould return0x7B6B5B4B7A6A5A4A.

• PUNPCKLBWwould return0x3B3A2B2A1B1A0B0A.

• PUNPCKLWDwould return0x3B2B3A2A1B0B1A0A.

• PUNPCKLDQwould return0x3B2B1B0B3A2A1A0A.

A.5.263 PUSH: Push Data on Stack

PUSH reg16 ; o16 50+r [8086]
PUSH reg32 ; o32 50+r [386]

PUSH r/m16 ; o16 FF /6 [8086]
PUSH r/m32 ; o32 FF /6 [386]

PUSH CS ; 0E [8086]
PUSH DS ; 1E [8086]
PUSH ES ; 06 [8086]
PUSH SS ; 16 [8086]
PUSH FS ; 0F A0 [386]
PUSH GS ; 0F A8 [386]

PUSH imm8 ; 6A ib [186]
PUSH imm16 ; o16 68 iw [186]
PUSH imm32 ; o32 68 id [386]

104

PUSHdecrements the stack pointer (SP or ESP) by 2 or 4, and then stores the given value at
[SS:SP] or [SS:ESP] .

The address-size attribute of the instruction determines whetherSPor ESPis used as the stack
pointer: to deliberately override the default given by theBITS setting, you can use ana16 or
a32 prefix.

The operand-size attribute of the instruction determines whether the stack pointer is
decremented by 2 or 4: this means that segment register pushes inBITS 32 mode will push 4
bytes on the stack, of which the upper two are undefined. If you need to override that, you can
use ano16 or o32 prefix.

The above opcode listings give two forms for general-purpose register push instructions: for
example,PUSH BXhas the two forms53 andFF F3. NASM will always generate the shorter
form when givenPUSH BX. NDISASM will disassemble both.

Unlike the undocumented and barely supportedPOP CS, PUSH CSis a perfectly valid and
sensible instruction, supported on all processors.

The instructionPUSH SPmay be used to distinguish an 8086 from later processors: on an 8086,
the value ofSPstored is the value it hasafter the push instruction, whereas on later processors
it is the valuebeforethe push instruction.

A.5.264 PUSHAx: Push All General-Purpose Registers

PUSHA ; 60 [186]
PUSHAD ; o32 60 [386]
PUSHAW ; o16 60 [186]

PUSHAWpushes, in succession,AX, CX, DX, BX, SP, BP, SI andDI on the stack, decrementing
the stack pointer by a total of 16.

PUSHADpushes, in succession,EAX, ECX, EDX, EBX, ESP, EBP, ESI andEDI on the stack,
decrementing the stack pointer by a total of 32.

In both cases, the value ofSPorESPpushed is itsoriginal value, as it had before the instruction
was executed.

PUSHAis an alias mnemonic for eitherPUSHAWor PUSHAD, depending on the currentBITS
setting.

Note that the registers are pushed in order of their numeric values in opcodes (see section A.2.1).

See alsoPOPA(section A.5.245).

A.5.265 PUSHFx: Push Flags Register

PUSHF ; 9C [8086]
PUSHFD ; o32 9C [386]
PUSHFW ; o16 9C [8086]

• PUSHFWpushes the bottom 16 bits of the flags register (or the whole flags register, on
processors below a 386) onto the stack.

• PUSHFDpushes the entire flags register onto the stack.

105

PUSHFis an alias mnemonic for eitherPUSHFWor PUSHFD, depending on the currentBITS
setting.

See alsoPOPF(section A.5.246).

A.5.266 PXOR: MMX Bitwise XOR

PXOR mm1,mm2/m64 ; 0F EF /r [PENT,MMX]
PXOR xmm1,xmm2/m128 ; 66 0F EF /r [WILLAMETTE,SSE2]

PXORperforms a bitwise XOR operation between its two operands (i.e. each bit of the result
is 1 if and only if exactly one of the corresponding bits of the two inputs was 1), and stores the
result in the destination (first) operand.

A.5.267 RCL, RCR: Bitwise Rotate through Carry Bit

RCL r/m8,1 ; D0 /2 [8086]
RCL r/m8,CL ; D2 /2 [8086]
RCL r/m8,imm8 ; C0 /2 ib [186]
RCL r/m16,1 ; o16 D1 /2 [8086]
RCL r/m16,CL ; o16 D3 /2 [8086]
RCL r/m16,imm8 ; o16 C1 /2 ib [186]
RCL r/m32,1 ; o32 D1 /2 [386]
RCL r/m32,CL ; o32 D3 /2 [386]
RCL r/m32,imm8 ; o32 C1 /2 ib [386]

RCR r/m8,1 ; D0 /3 [8086]
RCR r/m8,CL ; D2 /3 [8086]
RCR r/m8,imm8 ; C0 /3 ib [186]
RCR r/m16,1 ; o16 D1 /3 [8086]
RCR r/m16,CL ; o16 D3 /3 [8086]
RCR r/m16,imm8 ; o16 C1 /3 ib [186]
RCR r/m32,1 ; o32 D1 /3 [386]
RCR r/m32,CL ; o32 D3 /3 [386]
RCR r/m32,imm8 ; o32 C1 /3 ib [386]

RCL and RCRperform a 9-bit, 17-bit or 33-bit bitwise rotation operation, involving the
given source/destination (first) operand and the carry bit. Thus, for example, in the operation
RCL AL,1 , a 9-bit rotation is performed in whichAL is shifted left by 1, the top bit ofAL
moves into the carry flag, and the original value of the carry flag is placed in the low bit ofAL.

The number of bits to rotate by is given by the second operand. Only the bottom five bits of the
rotation count are considered by processors above the 8086.

You can force the longer (186 and upwards, beginning with aC1 or C0 byte) form of
RCL foo,1 by using aBYTEprefix:RCL foo,BYTE 1 . Similarly with RCR.

A.5.268 RCPPS: Packed Single-Precision FP Reciprocal

RCPPS xmm1,xmm2/m128 ; 0F 53 /r [KATMAI,SSE]

RCPPSreturns an approximation of the reciprocal of the packed single-precision FP values from
xmm2/m128. The maximum error for this approximation is: |Error| <= 1.5 x 2^-12

106

A.5.269 RCPSS: Scalar Single-Precision FP Reciprocal

RCPSS xmm1,xmm2/m128 ; F3 0F 53 /r [KATMAI,SSE]

RCPSSreturns an approximation of the reciprocal of the lower single-precision FP value from
xmm2/m32; the upper three fields are passed through from xmm1. The maximum error for this
approximation is: |Error| <= 1.5 x 2^-12

A.5.270 RDMSR: Read Model-Specific Registers

RDMSR ; 0F 32 [PENT,PRIV]

RDMSRreads the processor Model-Specific Register (MSR) whose index is stored inECX, and
stores the result inEDX:EAX. See alsoWRMSR(section A.5.329).

A.5.271 RDPMC: Read Performance-Monitoring Counters

RDPMC ; 0F 33 [P6]

RDPMCreads the processor performance-monitoring counter whose index is stored inECX, and
stores the result inEDX:EAX.

This instruction is available on P6 and later processors and on MMX class processors.

A.5.272 RDSHR: Read SMM Header Pointer Register

RDSHR r/m32 ; 0F 36 /0 [386,CYRIX,SMM]

RDSHRreads the contents of the SMM header pointer register and saves it to the destination
operand, which can be either a 32 bit memory location or a 32 bit register.

See alsoWRSHR(section A.5.330).

A.5.273 RDTSC: Read Time-Stamp Counter

RDTSC ; 0F 31 [PENT]

RDTSCreads the processor's time-stamp counter intoEDX:EAX.

A.5.274 RET, RETF, RETN: Return from Procedure Call

RET ; C3 [8086]
RET imm16 ; C2 iw [8086]

RETF ; CB [8086]
RETF imm16 ; CA iw [8086]

RETN ; C3 [8086]
RETN imm16 ; C2 iw [8086]

• RET, and its exact synonymRETN, popIP or EIP from the stack and transfer control to
the new address. Optionally, if a numeric second operand is provided, they increment the
stack pointer by a furtherimm16 bytes after popping the return address.

• RETFexecutes a far return: after poppingIP /EIP , it then popsCS, andthenincrements
the stack pointer by the optional argument if present.

107

A.5.275 ROL, ROR: Bitwise Rotate

ROL r/m8,1 ; D0 /0 [8086]
ROL r/m8,CL ; D2 /0 [8086]
ROL r/m8,imm8 ; C0 /0 ib [186]
ROL r/m16,1 ; o16 D1 /0 [8086]
ROL r/m16,CL ; o16 D3 /0 [8086]
ROL r/m16,imm8 ; o16 C1 /0 ib [186]
ROL r/m32,1 ; o32 D1 /0 [386]
ROL r/m32,CL ; o32 D3 /0 [386]
ROL r/m32,imm8 ; o32 C1 /0 ib [386]

ROR r/m8,1 ; D0 /1 [8086]
ROR r/m8,CL ; D2 /1 [8086]
ROR r/m8,imm8 ; C0 /1 ib [186]
ROR r/m16,1 ; o16 D1 /1 [8086]
ROR r/m16,CL ; o16 D3 /1 [8086]
ROR r/m16,imm8 ; o16 C1 /1 ib [186]
ROR r/m32,1 ; o32 D1 /1 [386]
ROR r/m32,CL ; o32 D3 /1 [386]
ROR r/m32,imm8 ; o32 C1 /1 ib [386]

ROL and RORperform a bitwise rotation operation on the given source/destination (first)
operand. Thus, for example, in the operationROL AL,1 , an 8-bit rotation is performed in which
AL is shifted left by 1 and the original top bit ofAL moves round into the low bit.

The number of bits to rotate by is given by the second operand. Only the bottom five bits of the
rotation count are considered by processors above the 8086.

You can force the longer (186 and upwards, beginning with aC1 or C0 byte) form of
ROL foo,1 by using aBYTEprefix:ROL foo,BYTE 1 . Similarly with ROR.

A.5.276 RSDC: Restore Segment Register and Descriptor

RSDC segreg,m80 ; 0F 79 /r [486,CYRIX,SMM]

RSDCrestores a segment register (DS, ES, FS, GS, or SS) from mem80, and sets up its descriptor.

A.5.277 RSLDT: Restore Segment Register and Descriptor

RSLDT m80 ; 0F 7B /0 [486,CYRIX,SMM]

RSLDTrestores the Local Descriptor Table (LDTR) from mem80.

A.5.278 RSM: Resume from System-Management Mode

RSM ; 0F AA [PENT]

RSMreturns the processor to its normal operating mode when it was in System-Management
Mode.

A.5.279 RSQRTPS: Packed Single-Precision FP Square Root Reciprocal

RSQRTPS xmm1,xmm2/m128 ; 0F 52 /r [KATMAI,SSE]

108

RSQRTPScomputes the approximate reciprocals of the square roots of the packed single-
precision floating-point values in the source and stores the results in xmm1. The maximum error
for this approximation is: |Error| <= 1.5 x 2^-12

A.5.280 RSQRTSS: Scalar Single-Precision FP Square Root Reciprocal

RSQRTSS xmm1,xmm2/m128 ; F3 0F 52 /r [KATMAI,SSE]

RSQRTSSreturns an approximation of the reciprocal of the square root of the lowest order
single-precision FP value from the source, and stores it in the low doubleword of the
destination register. The upper three fields of xmm1 are preserved. The maximum error for this
approximation is: |Error| <= 1.5 x 2^-12

A.5.281 RSTS: Restore TSR and Descriptor

RSTS m80 ; 0F 7D /0 [486,CYRIX,SMM]

RSTSrestores Task State Register (TSR) from mem80.

A.5.282 SAHF: Store AH to Flags

SAHF ; 9E [8086]

SAHFsets the low byte of the flags word according to the contents of theAHregister.

The operation ofSAHFis:

 AH --> SF:ZF:0:AF:0:PF:1:CF

See alsoLAHF(section A.5.131).

A.5.283 SAL, SAR: Bitwise Arithmetic Shifts

SAL r/m8,1 ; D0 /4 [8086]
SAL r/m8,CL ; D2 /4 [8086]
SAL r/m8,imm8 ; C0 /4 ib [186]
SAL r/m16,1 ; o16 D1 /4 [8086]
SAL r/m16,CL ; o16 D3 /4 [8086]
SAL r/m16,imm8 ; o16 C1 /4 ib [186]
SAL r/m32,1 ; o32 D1 /4 [386]
SAL r/m32,CL ; o32 D3 /4 [386]
SAL r/m32,imm8 ; o32 C1 /4 ib [386]

SAR r/m8,1 ; D0 /7 [8086]
SAR r/m8,CL ; D2 /7 [8086]
SAR r/m8,imm8 ; C0 /7 ib [186]
SAR r/m16,1 ; o16 D1 /7 [8086]
SAR r/m16,CL ; o16 D3 /7 [8086]
SAR r/m16,imm8 ; o16 C1 /7 ib [186]
SAR r/m32,1 ; o32 D1 /7 [386]
SAR r/m32,CL ; o32 D3 /7 [386]
SAR r/m32,imm8 ; o32 C1 /7 ib [386]

SAL and SAR perform an arithmetic shift operation on the given source/destination (first)

109

operand. The vacated bits are filled with zero forSAL, and with copies of the original high bit
of the source operand forSAR.

SAL is a synonym forSHL (see section A.5.290). NASM will assemble either one to the same
code, but NDISASM will always disassemble that code asSHL.

The number of bits to shift by is given by the second operand. Only the bottom five bits of the
shift count are considered by processors above the 8086.

You can force the longer (186 and upwards, beginning with aC1 or C0 byte) form of
SAL foo,1 by using aBYTEprefix:SAL foo,BYTE 1 . Similarly with SAR.

A.5.284 SALC: Set AL from Carry Flag

SALC ; D6 [8086,UNDOC]

SALCis an early undocumented instruction similar in concept toSETcc (section A.5.287). Its
function is to setAL to zero if the carry flag is clear, or to0xFF if it is set.

A.5.285 SBB: Subtract with Borrow

SBB r/m8,reg8 ; 18 /r [8086]
SBB r/m16,reg16 ; o16 19 /r [8086]
SBB r/m32,reg32 ; o32 19 /r [386]

SBB reg8,r/m8 ; 1A /r [8086]
SBB reg16,r/m16 ; o16 1B /r [8086]
SBB reg32,r/m32 ; o32 1B /r [386]

SBB r/m8,imm8 ; 80 /3 ib [8086]
SBB r/m16,imm16 ; o16 81 /3 iw [8086]
SBB r/m32,imm32 ; o32 81 /3 id [386]

SBB r/m16,imm8 ; o16 83 /3 ib [8086]
SBB r/m32,imm8 ; o32 83 /3 ib [386]

SBB AL,imm8 ; 1C ib [8086]
SBB AX,imm16 ; o16 1D iw [8086]
SBB EAX,imm32 ; o32 1D id [386]

SBBperforms integer subtraction: it subtracts its second operand, plus the value of the carry flag,
from its first, and leaves the result in its destination (first) operand. The flags are set according to
the result of the operation: in particular, the carry flag is affected and can be used by a subsequent
SBBinstruction.

In the forms with an 8-bit immediate second operand and a longer first operand, the second
operand is considered to be signed, and is sign-extended to the length of the first operand. The
BYTEqualifier can be used to force NASM to generate this form of the instruction. Recent
versions of NASM automatically optimise to this form if the immediate operand's value is known
during the assembling of that instruction, and fits in the range of a signed byte. The longer variant
can then still be forced using theSTRICT WORDor STRICT DWORDqualifier.

To subtract one number from another without also subtracting the contents of the carry flag, use
SUB(section A.5.305).

110

A.5.286 SCASB, SCASW, SCASD: Scan String

SCASB ; AE [8086]
SCASW ; o16 AF [8086]
SCASD ; o32 AF [386]

SCASBcompares the byte inAL with the byte at[ES:DI] or [ES:EDI] , and sets the flags
accordingly. It then increments or decrements (depending on the direction flag: increments if
the flag is clear, decrements if it is set)DI (or EDI).

The register used isDI if the address size is 16 bits, andEDI if it is 32 bits. If you need to use an
address size not equal to the currentBITS setting, you can use an explicita16 or a32 prefix.

Segment override prefixes have no effect for this instruction: the use ofES for the load from
[DI] or [EDI] cannot be overridden.

SCASWandSCASDwork in the same way, but they compare a word toAX or a doubleword
to EAXinstead of a byte toAL, and increment or decrement the addressing registers by 2 or 4
instead of 1.

The REPEandREPNEprefixes (equivalently,REPZandREPNZ) may be used to repeat the
instruction up toCX(orECX- again, the address size chooses which) times until the first unequal
or equal element is found. To NASM,REPis an alias forREPE.

A.5.286.1 Pseudo-code examples

a16 SCASBand with Direction Flag clear (UP) is equal to

CMP AL, BYTE [ES:DI]
LEA DI, [DI + 1]

a16 REPE SCASWand with Direction Flag clear (UP) is equal to

JCXZ @FF
@@:
CMP AX, WORD [ES:DI]
LEA DI, [DI + 2]
a16 LOOPE @B
@@:

a32 SCASDwith Direction Flag set (DN) is equal to

CMP EAX, DWORD [ES:EDI]
LEA EDI, [EDI - 4]

A.5.287 SETcc: Set Register from Condition

SETcc r/m8 ; 0F 90+cc /2 [386]

SETcc sets the given 8-bit operand to zero if its condition is not satisfied, and to 1 if it is.

A.5.288 SFENCE: Store Fence

SFENCE ; 0F AE /7 [KATMAI]

SFENCEperforms a serialising operation on all writes to memory that were issued before the

111

SFENCEinstruction. This guarantees that all memory writes before theSFENCEinstruction are
visible before any writes after theSFENCEinstruction.

SFENCEis ordered respective to otherSFENCEinstruction,MFENCE, any memory write and
any other serialising instruction (such asCPUID).

Weakly ordered memory types can be used to achieve higher processor performance through
such techniques as out-of-order issue, write-combining, and write-collapsing. The degree to
which a consumer of data recognizes or knows that the data is weakly ordered varies among
applications and may be unknown to the producer of this data. TheSFENCEinstruction provides
a performance-efficient way of insuring store ordering between routines that produce weakly-
ordered results and routines that consume this data.

SFENCEuses the following ModR/M encoding:

 Mod (7:6) = 11B
 Reg/Opcode (5:3) = 111B
 R/M (2:0) = 000B

All other ModR/M encodings are defined to be reserved, and use of these encodings risks
incompatibility with future processors.

See alsoLFENCE(section A.5.137) andMFENCE(section A.5.151).

A.5.289 SGDT, SIDT , SLDT: Store Descriptor Table Pointers

SGDT mem ; 0F 01 /0 [286,PRIV]
SIDT mem ; 0F 01 /1 [286,PRIV]
SLDT r/m16 ; 0F 00 /0 [286,PRIV]

SGDTandSIDT both take a 6-byte memory area as an operand: they store the contents of the
GDTR (global descriptor table register) or IDTR (interrupt descriptor table register) as a 16-bit
size limit and a 32-bit linear address into that area (limit word first, then linear address dword).
The GDT and IDT instructions are the only instructions which directly uselinear addresses,
rather than segment/offset pairs.

SLDT stores the segment selector corresponding to the LDT (local descriptor table) into the
given operand.

See alsoLGDT, LIDT andLLDT (section A.5.138).

A.5.290 SHL, SHR: Bitwise Logical Shifts

SHL r/m8,1 ; D0 /4 [8086]
SHL r/m8,CL ; D2 /4 [8086]
SHL r/m8,imm8 ; C0 /4 ib [186]
SHL r/m16,1 ; o16 D1 /4 [8086]
SHL r/m16,CL ; o16 D3 /4 [8086]
SHL r/m16,imm8 ; o16 C1 /4 ib [186]
SHL r/m32,1 ; o32 D1 /4 [386]
SHL r/m32,CL ; o32 D3 /4 [386]
SHL r/m32,imm8 ; o32 C1 /4 ib [386]

SHR r/m8,1 ; D0 /5 [8086]
SHR r/m8,CL ; D2 /5 [8086]

112

SHR r/m8,imm8 ; C0 /5 ib [186]
SHR r/m16,1 ; o16 D1 /5 [8086]
SHR r/m16,CL ; o16 D3 /5 [8086]
SHR r/m16,imm8 ; o16 C1 /5 ib [186]
SHR r/m32,1 ; o32 D1 /5 [386]
SHR r/m32,CL ; o32 D3 /5 [386]
SHR r/m32,imm8 ; o32 C1 /5 ib [386]

SHLandSHRperform a logical shift operation on the given source/destination (first) operand.
The vacated bits are filled with zero.

A synonym forSHL is SAL (see section A.5.283). NASM will assemble either one to the same
code, but NDISASM will always disassemble that code asSHL.

The number of bits to shift by is given by the second operand. Only the bottom five bits of the
shift count are considered by processors above the 8086.

You can force the longer (186 and upwards, beginning with aC1 or C0 byte) form of
SHL foo,1 by using aBYTEprefix:SHL foo,BYTE 1 . Similarly with SHR.

A.5.291 SHLD, SHRD: Bitwise Double-Precision Shifts

SHLD r/m16,reg16,imm8 ; o16 0F A4 /r ib [386]
SHLD r/m16,reg32,imm8 ; o32 0F A4 /r ib [386]
SHLD r/m16,reg16,CL ; o16 0F A5 /r [386]
SHLD r/m16,reg32,CL ; o32 0F A5 /r [386]

SHRD r/m16,reg16,imm8 ; o16 0F AC /r ib [386]
SHRD r/m32,reg32,imm8 ; o32 0F AC /r ib [386]
SHRD r/m16,reg16,CL ; o16 0F AD /r [386]
SHRD r/m32,reg32,CL ; o32 0F AD /r [386]

• SHLDperforms a double-precision left shift. It notionally places its second operand to the
right of its first, then shifts the entire bit string thus generated to the left by a number of
bits specified in the third operand. It then updates only thefirst operand according to the
result of this. The second operand is not modified.

• SHRDperforms the corresponding right shift: it notionally places the second operand to
the left of the first, shifts the whole bit string right, and updates only the first operand.

For example, ifEAXholds0x01234567 andEBXholds0x89ABCDEF, then the instruction
SHLD EAX,EBX,4 would updateEAX to hold 0x12345678 . Under the same conditions,
SHRD EAX,EBX,4would updateEAXto hold0xF0123456 .

The number of bits to shift by is given by the third operand. Only the bottom five bits of the
shift count are considered.

A.5.292 SHUFPD: Shuffle Packed Double-Precision FP Values

SHUFPD xmm1,xmm2/m128,imm8 ; 66 0F C6 /r ib [WILLAMETTE,SSE2]

SHUFPDmoves one of the packed double-precision FP values from the destination operand
into the low quadword of the destination operand; the upper quadword is generated by moving
one of the double-precision FP values from the source operand into the destination. The select
(third) operand selects which of the values are moved to the destination register.

113

The select operand is an 8-bit immediate: bit 0 selects which value is moved from the destination
operand to the result (where 0 selects the low quadword and 1 selects the high quadword) and
bit 1 selects which value is moved from the source operand to the result. Bits 2 through 7 of the
shuffle operand are reserved.

A.5.293 SHUFPS: Shuffle Packed Single-Precision FP Values

SHUFPS xmm1,xmm2/m128,imm8 ; 0F C6 /r ib [KATMAI,SSE]

SHUFPSmoves two of the packed single-precision FP values from the destination operand into
the low quadword of the destination operand; the upper quadword is generated by moving two
of the single-precision FP values from the source operand into the destination. The select (third)
operand selects which of the values are moved to the destination register.

The select operand is an 8-bit immediate: bits 0 and 1 select the value to be moved from the
destination operand the low doubleword of the result, bits 2 and 3 select the value to be moved
from the destination operand the second doubleword of the result, bits 4 and 5 select the value
to be moved from the source operand the third doubleword of the result, and bits 6 and 7 select
the value to be moved from the source operand to the high doubleword of the result.

A.5.294 SMI: System Management Interrupt

SMI ; F1 [386,UNDOC]

SMI puts some AMD processors into SMM mode. It is available on some 386 and 486
processors, and is only available when DR7 bit 12 is set, otherwise it generates an Int 1.

A.5.295 SMINT, SMINTOLD: Software SMM Entry (CYRIX)

SMINT ; 0F 38 [PENT,CYRIX]
SMINTOLD ; 0F 7E [486,CYRIX]

SMINT puts the processor into SMM mode. The CPU state information is saved in the SMM
memory header, and then execution begins at the SMM base address.

SMINTOLDis the same asSMINT, but was the opcode used on the 486.

This pair of opcodes is specific to the Cyrix and compatible range of processors (Cyrix, IBM,
Via).

A.5.296 SMSW: Store Machine Status Word

SMSW r/m16 ; 0F 01 /4 [286,PRIV]

SMSWstores the bottom half of theCR0control register (or the Machine Status Word, on 286
processors) into the destination operand. See alsoLMSW(section A.5.139).

For 32-bit code, this would store all ofCR0in the specified register (or the bottom 16 bits if the
destination is a memory location), without needing an operand size override byte.

A.5.297 SQRTPD: Packed Double-Precision FP Square Root

SQRTPD xmm1,xmm2/m128 ; 66 0F 51 /r [WILLAMETTE,SSE2]

SQRTPDcalculates the square root of the packed double-precision FP value from the source
operand, and stores the double-precision results in the destination register.

114

A.5.298 SQRTPS: Packed Single-Precision FP Square Root

SQRTPS xmm1,xmm2/m128 ; 0F 51 /r [KATMAI,SSE]

SQRTPScalculates the square root of the packed single-precision FP value from the source
operand, and stores the single-precision results in the destination register.

A.5.299 SQRTSD: Scalar Double-Precision FP Square Root

SQRTSD xmm1,xmm2/m128 ; F2 0F 51 /r [WILLAMETTE,SSE2]

SQRTSDcalculates the square root of the low-order double-precision FP value from the source
operand, and stores the double-precision result in the destination register. The high-quadword
remains unchanged.

A.5.300 SQRTSS: Scalar Single-Precision FP Square Root

SQRTSS xmm1,xmm2/m128 ; F3 0F 51 /r [KATMAI,SSE]

SQRTSScalculates the square root of the low-order single-precision FP value from the source
operand, and stores the single-precision result in the destination register. The three high
doublewords remain unchanged.

A.5.301 STC, STD, STI : Set Flags

STC ; F9 [8086]
STD ; FD [8086]
STI ; FB [8086]

These instructions set various flags.STCsets the carry flag;STDsets the direction flag; and
STI sets the interrupt flag (thus enabling interrupts).

To clear the carry, direction, or interrupt flags, use theCLC, CLDandCLI instructions (section
A.5.20). To invert the carry flag, useCMC(section A.5.22).

A.5.302 STMXCSR: Store Streaming SIMD Extension Control/Status

STMXCSR m32 ; 0F AE /3 [KATMAI,SSE]

STMXCSRstores the contents of theMXCSRcontrol/status register to the specified memory
location.MXCSRis used to enable masked/unmasked exception handling, to set rounding modes,
to set flush-to-zero mode, and to view exception status flags. The reserved bits in theMXCSR
register are stored as 0s.

For details of theMXCSRregister, see the Intel processor docs.

See alsoLDMXCSR(section A.5.133).

A.5.303 STOSB, STOSW, STOSD: Store Byte to String

STOSB ; AA [8086]
STOSW ; o16 AB [8086]
STOSD ; o32 AB [386]

STOSBstores the byte inAL at [ES:DI] or [ES:EDI] , and sets the flags accordingly. It
then increments or decrements (depending on the direction flag: increments if the flag is clear,

115

decrements if it is set)DI (or EDI).

The register used isDI if the address size is 16 bits, andEDI if it is 32 bits. If you need to use an
address size not equal to the currentBITS setting, you can use an explicita16 or a32 prefix.

Segment override prefixes have no effect for this instruction: the use ofESfor the store to[DI]
or [EDI] cannot be overridden.

STOSWandSTOSDwork in the same way, but they store the word inAXor the doubleword in
EAX instead of the byte inAL, and increment or decrement the addressing registers by 2 or 4
instead of 1.

TheREPprefix may be used to repeat the instructionCX(orECX- again, the address size chooses
which) times. TheREPaliasREPE, as well as the differently-encodedREPNE, are both allowed
as well. They behave in the same way asREP.

A.5.303.1 Pseudo-code examples

a16 STOSBand with Direction Flag clear (UP) is equal to

MOV BYTE [ES:DI], AL
LEA DI, [DI + 1]

a16 REP STOSWand with Direction Flag clear (UP) is equal to

JCXZ @FF
@@:
MOV WORD [ES:DI], AX
LEA DI, [DI + 2]
a16 LOOP @B
@@:

a32 STOSDwith Direction Flag set (DN) is equal to

MOV DWORD [ES:EDI], EAX
LEA EDI, [EDI - 4]

A.5.304 STR: Store Task Register

STR r/m16 ; 0F 00 /1 [286,PRIV]

STR stores the segment selector corresponding to the contents of the Task Register into its
operand. When the operand size is 32 bit and the destination is a register, the upper 16-bits are
cleared to 0s. When the destination operand is a memory location, 16 bits are written regardless
of the operand size.

A.5.305 SUB: Subtract Integers

SUB r/m8,reg8 ; 28 /r [8086]
SUB r/m16,reg16 ; o16 29 /r [8086]
SUB r/m32,reg32 ; o32 29 /r [386]

SUB reg8,r/m8 ; 2A /r [8086]
SUB reg16,r/m16 ; o16 2B /r [8086]
SUB reg32,r/m32 ; o32 2B /r [386]

116

SUB r/m8,imm8 ; 80 /5 ib [8086]
SUB r/m16,imm16 ; o16 81 /5 iw [8086]
SUB r/m32,imm32 ; o32 81 /5 id [386]

SUB r/m16,imm8 ; o16 83 /5 ib [8086]
SUB r/m32,imm8 ; o32 83 /5 ib [386]

SUB AL,imm8 ; 2C ib [8086]
SUB AX,imm16 ; o16 2D iw [8086]
SUB EAX,imm32 ; o32 2D id [386]

SUBperforms integer subtraction: it subtracts its second operand from its first, and leaves the
result in its destination (first) operand. The flags are set according to the result of the operation:
in particular, the carry flag is affected and can be used by a subsequentSBBinstruction (section
A.5.285).

In the forms with an 8-bit immediate second operand and a longer first operand, the second
operand is considered to be signed, and is sign-extended to the length of the first operand. The
BYTEqualifier can be used to force NASM to generate this form of the instruction. Recent
versions of NASM automatically optimise to this form if the immediate operand's value is known
during the assembling of that instruction, and fits in the range of a signed byte. The longer variant
can then still be forced using theSTRICT WORDor STRICT DWORDqualifier.

The CMP(see section A.5.24) instruction performs the same operation asSUBbut without
writing to the destination operand. That is, it only reads the operands and writes the status flags.

A.5.306 SUBPD: Packed Double-Precision FP Subtract

SUBPD xmm1,xmm2/m128 ; 66 0F 5C /r [WILLAMETTE,SSE2]

SUBPDsubtracts the packed double-precision FP values of the source operand from those of
the destination operand, and stores the result in the destination operation.

A.5.307 SUBPS: Packed Single-Precision FP Subtract

SUBPS xmm1,xmm2/m128 ; 0F 5C /r [KATMAI,SSE]

SUBPSsubtracts the packed single-precision FP values of the source operand from those of the
destination operand, and stores the result in the destination operation.

A.5.308 SUBSD: Scalar Single-FP Subtract

SUBSD xmm1,xmm2/m128 ; F2 0F 5C /r [WILLAMETTE,SSE2]

SUBSDsubtracts the low-order double-precision FP value of the source operand from that of
the destination operand, and stores the result in the destination operation. The high quadword
is unchanged.

A.5.309 SUBSS: Scalar Single-FP Subtract

SUBSS xmm1,xmm2/m128 ; F3 0F 5C /r [KATMAI,SSE]

SUBSSsubtracts the low-order single-precision FP value of the source operand from that
of the destination operand, and stores the result in the destination operation. The three high
doublewords are unchanged.

117

A.5.310 SVDC: Save Segment Register and Descriptor

SVDC m80,segreg ; 0F 78 /r [486,CYRIX,SMM]

SVDCsaves a segment register (DS, ES, FS, GS, or SS) and its descriptor to mem80.

A.5.311 SVLDT: Save LDTR and Descriptor

SVLDT m80 ; 0F 7A /0 [486,CYRIX,SMM]

SVLDTsaves the Local Descriptor Table (LDTR) to mem80.

A.5.312 SVTS: Save TSR and Descriptor

SVTS m80 ; 0F 7C /0 [486,CYRIX,SMM]

SVTSsaves the Task State Register (TSR) to mem80.

A.5.313 SYSCALL: Call Operating System

SYSCALL ; 0F 05 [P6,AMD]

SYSCALLprovides a fast method of transferring control to a fixed entry point in an operating
system.

• TheEIP register is copied into theECXregister.

• Bits [31-0] of the 64-bit SYSCALL/SYSRET Target Address Register (STAR) are copied
into theEIP register.

• Bits [47-32] of theSTARregister specify the selector that is copied into theCSregister.

• Bits [47-32]+1000b of theSTARregister specify the selector that is copied into the SS
register.

TheCSandSSregisters should not be modified by the operating system between the execution
of theSYSCALLinstruction and its correspondingSYSRETinstruction.

For more information, see the
SYSCALL and SYSRET Instruction Specification (AMD document number
21086.pdf).

A.5.314 SYSENTER: Fast System Call

SYSENTER ; 0F 34 [P6]

SYSENTERexecutes a fast call to a level 0 system procedure or routine. Before using this
instruction, various MSRs need to be set up:

• SYSENTER_CS_MSRcontains the 32-bit segment selector for the privilege level 0 code
segment. (This value is also used to compute the segment selector of the privilege level 0
stack segment.)

• SYSENTER_EIP_MSRcontains the 32-bit offset into the privilege level 0 code segment
to the first instruction of the selected operating procedure or routine.

• SYSENTER_ESP_MSRcontains the 32-bit stack pointer for the privilege level 0 stack.

118

SYSENTERperforms the following sequence of operations:

• Loads the segment selector from theSYSENTER_CS_MSRinto theCSregister.

• Loads the instruction pointer from theSYSENTER_EIP_MSRinto theEIP register.

• Adds 8 to the value inSYSENTER_CS_MSRand loads it into theSS register.

• Loads the stack pointer from theSYSENTER_ESP_MSRinto theESPregister.

• Switches to privilege level 0.

• Clears theVMflag in theEFLAGSregister, if the flag is set.

• Begins executing the selected system procedure.

In particular, note that this instruction des not save the values ofCSor (E)IP . If you need to
return to the calling code, you need to write your code to cater for this.

For more information, see the Intel Architecture Software Developer's Manual, Volume 2.

A.5.315 SYSEXIT: Fast Return From System Call

SYSEXIT ; 0F 35 [P6,PRIV]

SYSEXIT executes a fast return to privilege level 3 user code. This instruction is a companion
instruction to theSYSENTERinstruction, and can only be executed by privilege level 0 code.
Various registers need to be set up before calling this instruction:

• SYSENTER_CS_MSRcontains the 32-bit segment selector for the privilege level 0 code
segment in which the processor is currently executing. (This value is used to compute the
segment selectors for the privilege level 3 code and stack segments.)

• EDXcontains the 32-bit offset into the privilege level 3 code segment to the first instruction
to be executed in the user code.

• ECXcontains the 32-bit stack pointer for the privilege level 3 stack.

SYSEXIT performs the following sequence of operations:

• Adds 16 to the value inSYSENTER_CS_MSRand loads the sum into theCS selector
register.

• Loads the instruction pointer from theEDXregister into theEIP register.

• Adds 24 to the value inSYSENTER_CS_MSRand loads the sum into theSS selector
register.

• Loads the stack pointer from theECXregister into theESPregister.

• Switches to privilege level 3.

• Begins executing the user code at theEIP address.

For more information on the use of theSYSENTERandSYSEXIT instructions, see the Intel
Architecture Software Developer's Manual, Volume 2.

119

A.5.316 SYSRET: Return From Operating System

SYSRET ; 0F 07 [P6,AMD,PRIV]

SYSRETis the return instruction used in conjunction with theSYSCALLinstruction to provide
fast entry/exit to an operating system.

• TheECXregister, which points to the next sequential instruction after the corresponding
SYSCALLinstruction, is copied into theEIP register.

• Bits [63-48] of theSTARregister specify the selector that is copied into theCSregister.

• Bits [63-48]+1000b of theSTARregister specify the selector that is copied into theSS
register.

• Bits [1-0] of theSS register are set to 11b (RPL of 3) regardless of the value of bits [49-
48] of theSTARregister.

TheCSandSSregisters should not be modified by the operating system between the execution
of theSYSCALLinstruction and its correspondingSYSRETinstruction.

For more information, see the
SYSCALL and SYSRET Instruction Specification (AMD document number
21086.pdf).

A.5.317 TEST: Test Bits (notional bitwise AND)

TEST r/m8,reg8 ; 84 /r [8086]
TEST r/m16,reg16 ; o16 85 /r [8086]
TEST r/m32,reg32 ; o32 85 /r [386]

TEST r/m8,imm8 ; F6 /0 ib [8086]
TEST r/m16,imm16 ; o16 F7 /0 iw [8086]
TEST r/m32,imm32 ; o32 F7 /0 id [386]

TEST AL,imm8 ; A8 ib [8086]
TEST AX,imm16 ; o16 A9 iw [8086]
TEST EAX,imm32 ; o32 A9 id [386]

TEST performs a ‘mental’ bitwise AND of its two operands, and affects the flags as if the
operation had taken place, but does not store the result of the operation anywhere. (For bitwise
AND that does store the result, see section A.5.8.)

The Carry Flag is cleared byTEST. The Zero Flag is set according to whether the result is zero.

A.5.318 UCOMISD: Unordered Scalar Double-Precision FP compare and set
EFLAGS

UCOMISD xmm1,xmm2/m128 ; 66 0F 2E /r [WILLAMETTE,SSE2]

UCOMISDcompares the low-order double-precision FP numbers in the two operands, and sets
the ZF, PF andCF bits in theEFLAGSregister. In addition, theOF, SF andAF bits in the
EFLAGSregister are zeroed out. The unordered predicate (ZF, PF andCFall set) is returned if
either source operand is aNaN(qNaNor sNaN).

120

A.5.319 UCOMISS: Unordered Scalar Single-Precision FP compare and set
EFLAGS

UCOMISS xmm1,xmm2/m128 ; 0F 2E /r [KATMAI,SSE]

UCOMISScompares the low-order single-precision FP numbers in the two operands, and sets
the ZF, PF andCF bits in theEFLAGSregister. In addition, theOF, SF andAF bits in the
EFLAGSregister are zeroed out. The unordered predicate (ZF, PF andCFall set) is returned if
either source operand is aNaN(qNaNor sNaN).

A.5.320 UD0, UD1, UD2: Undefined Instruction

UD0 ; 0F FF [186,UNDOC]
UD1 ; 0F B9 [186,UNDOC]
UD2 ; 0F 0B [186]

UDxcan be used to generate an invalid opcode exception, for testing purposes.

UD0is specifically documented by AMD as being reserved for this purpose.

UD1is documented by Intel as being available for this purpose.

UD2is specifically documented by Intel as being reserved for this purpose. Intel document this
as the preferred method of generating an invalid opcode exception.

All these opcodes can be used to generate invalid opcode exceptions on all currently available
processors.

A.5.321 UMOV: User Move Data

UMOV r/m8,reg8 ; 0F 10 /r [386,UNDOC]
UMOV r/m16,reg16 ; o16 0F 11 /r [386,UNDOC]
UMOV r/m32,reg32 ; o32 0F 11 /r [386,UNDOC]

UMOV reg8,r/m8 ; 0F 12 /r [386,UNDOC]
UMOV reg16,r/m16 ; o16 0F 13 /r [386,UNDOC]
UMOV reg32,r/m32 ; o32 0F 13 /r [386,UNDOC]

This undocumented instruction is used by in-circuit emulators to access user memory (as
opposed to host memory). It is used just like an ordinary memory/register or register/register
MOVinstruction, but accesses user space.

This instruction is only available on some AMD and IBM 386 and 486 processors.

A.5.322 UNPCKHPD: Unpack and Interleave High Packed Double-Precision FP
Values

UNPCKHPD xmm1,xmm2/m128 ; 66 0F 15 /r [WILLAMETTE,SSE2]

UNPCKHPDperforms an interleaved unpack of the high-order data elements of the source and
destination operands, saving the result inxmm1. It ignores the lower half of the sources.

The operation of this instruction is:

121

 dst[63-0] := dst[127-64];
 dst[127-64] := src[127-64].

A.5.323 UNPCKHPS: Unpack and Interleave High Packed Single-Precision FP
Values

UNPCKHPS xmm1,xmm2/m128 ; 0F 15 /r [KATMAI,SSE]

UNPCKHPSperforms an interleaved unpack of the high-order data elements of the source and
destination operands, saving the result inxmm1. It ignores the lower half of the sources.

The operation of this instruction is:

 dst[31-0] := dst[95-64];
 dst[63-32] := src[95-64];
 dst[95-64] := dst[127-96];
 dst[127-96] := src[127-96].

A.5.324 UNPCKLPD: Unpack and Interleave Low Packed Double-Precision FP
Data

UNPCKLPD xmm1,xmm2/m128 ; 66 0F 14 /r [WILLAMETTE,SSE2]

UNPCKLPDperforms an interleaved unpack of the low-order data elements of the source and
destination operands, saving the result inxmm1. It ignores the lower half of the sources.

The operation of this instruction is:

 dst[63-0] := dst[63-0];
 dst[127-64] := src[63-0].

A.5.325 UNPCKLPS: Unpack and Interleave Low Packed Single-Precision FP
Data

UNPCKLPS xmm1,xmm2/m128 ; 0F 14 /r [KATMAI,SSE]

UNPCKLPSperforms an interleaved unpack of the low-order data elements of the source and
destination operands, saving the result inxmm1. It ignores the lower half of the sources.

The operation of this instruction is:

 dst[31-0] := dst[31-0];
 dst[63-32] := src[31-0];
 dst[95-64] := dst[63-32];
 dst[127-96] := src[63-32].

A.5.326 VERR, VERW: Verify Segment Readability/Writability

VERR r/m16 ; 0F 00 /4 [286,PRIV]

VERW r/m16 ; 0F 00 /5 [286,PRIV]

• VERRsets the zero flag if the segment specified by the selector in its operand can be read
from at the current privilege level. Otherwise it is cleared.

• VERWsets the zero flag if the segment can be written.

122

A.5.327 WAIT: Wait for Floating-Point Processor

WAIT ; 9B [8086]
FWAIT ; 9B [8086]

WAIT, on 8086 systems with a separate 8087 FPU, waits for the FPU to have finished any
operation it is engaged in before continuing main processor operations, so that (for example) an
FPU store to main memory can be guaranteed to have completed before the CPU tries to read
the result back out.

On higher processors,WAIT is unnecessary for this purpose, and it has the alternative purpose of
ensuring that any pending unmasked FPU exceptions have happened before execution continues.

A.5.328 WBINVD: Write Back and Invalidate Cache

WBINVD ; 0F 09 [486]

WBINVDinvalidates and empties the processor's internal caches, and causes the processor to
instruct external caches to do the same. It writes the contents of the caches back to memory first,
so no data is lost. To flush the caches quickly without bothering to write the data back first, use
INVD (section A.5.125).

A.5.329 WRMSR: Write Model-Specific Registers

WRMSR ; 0F 30 [PENT]

WRMSRwrites the value inEDX:EAX to the processor Model-Specific Register (MSR) whose
index is stored inECX. See alsoRDMSR(section A.5.270).

A.5.330 WRSHR: Write SMM Header Pointer Register

WRSHR r/m32 ; 0F 37 /0 [386,CYRIX,SMM]

WRSHRloads the contents of either a 32-bit memory location or a 32-bit register into the SMM
header pointer register.

See alsoRDSHR(section A.5.272).

A.5.331 XADD: Exchange and Add

XADD r/m8,reg8 ; 0F C0 /r [486]
XADD r/m16,reg16 ; o16 0F C1 /r [486]
XADD r/m32,reg32 ; o32 0F C1 /r [486]

XADDexchanges the values in its two operands, and then adds them together and writes the
result into the destination (first) operand. This instruction can be used with aLOCKprefix for
multi-processor synchronisation purposes.

A.5.332 XBTS: Extract Bit String

XBTS reg16,r/m16 ; o16 0F A6 /r [386,UNDOC]
XBTS reg32,r/m32 ; o32 0F A6 /r [386,UNDOC]

The implied operation of this instruction is:

XBTS r/m16,reg16,AX,CL

123

XBTS r/m32,reg32,EAX,CL

Writes a bit string from the source operand to the destination.CL indicates the number of bits
to be copied, and(E)AX indicates the low order bit offset in the source. The bits are written
to the low order bits of the destination register. For example, ifCL is set to 4 andAX (for 16-
bit code) is set to 5, bits 5-8 ofsrc will be copied to bits 0-3 ofdst . This instruction is very
poorly documented, and I have been unable to find any official source of documentation on it.

XBTSis supported only on the early Intel 386s, and conflicts with the opcodes forCMPXCHG486
(on early Intel 486s). NASM supports it only for completeness. Its counterpart isIBTS (see
section A.5.116).

A.5.333 XCHG: Exchange

XCHG reg8,r/m8 ; 86 /r [8086]
XCHG reg16,r/m8 ; o16 87 /r [8086]
XCHG reg32,r/m32 ; o32 87 /r [386]

XCHG r/m8,reg8 ; 86 /r [8086]
XCHG r/m16,reg16 ; o16 87 /r [8086]
XCHG r/m32,reg32 ; o32 87 /r [386]

XCHG AX,reg16 ; o16 90+r [8086]
XCHG EAX,reg32 ; o32 90+r [386]
XCHG reg16,AX ; o16 90+r [8086]
XCHG reg32,EAX ; o32 90+r [386]

XCHGexchanges the values in its two operands. It can be used with aLOCKprefix for purposes
of multi-processor synchronisation.

XCHG AX,AXor XCHG EAX,EAX(depending on theBITS setting) generates the opcode
90h , and so is a synonym forNOP(section A.5.190).

A.5.334 XLATB: Translate Byte in Lookup Table

XLAT ; D7 [8086]
XLATB ; D7 [8086]

XLATBadds the value inAL, treated as an unsigned byte, toBXor EBX, and loads the byte from
the resulting address (in the segment specified byDS) back intoAL.

The base register used isBX if the address size is 16 bits, andEBXif it is 32 bits. If you need to
use an address size not equal to the currentBITS setting, you can use an explicita16 or a32
prefix.

On 386 or higher level machines, the segment register used to load from[BX+AL] or
[EBX+AL] can be overridden by using a segment register name as a prefix (for example,
ES XLATB). It is reported that a segment override may be ignored by CPUs of a lower level
than a 386.

A.5.335 XOR: Bitwise Exclusive OR

XOR r/m8,reg8 ; 30 /r [8086]
XOR r/m16,reg16 ; o16 31 /r [8086]
XOR r/m32,reg32 ; o32 31 /r [386]

124

XOR reg8,r/m8 ; 32 /r [8086]
XOR reg16,r/m16 ; o16 33 /r [8086]
XOR reg32,r/m32 ; o32 33 /r [386]

XOR r/m8,imm8 ; 80 /6 ib [8086]
XOR r/m16,imm16 ; o16 81 /6 iw [8086]
XOR r/m32,imm32 ; o32 81 /6 id [386]

XOR r/m16,imm8 ; o16 83 /6 ib [8086]
XOR r/m32,imm8 ; o32 83 /6 ib [386]

XOR AL,imm8 ; 34 ib [8086]
XOR AX,imm16 ; o16 35 iw [8086]
XOR EAX,imm32 ; o32 35 id [386]

XORperforms a bitwise XOR operation between its two operands (i.e. each bit of the result is
1 if and only if exactly one of the corresponding bits of the two inputs was 1), and stores the
result in the destination (first) operand.

In the forms with an 8-bit immediate second operand and a longer first operand, the second
operand is considered to be signed, and is sign-extended to the length of the first operand. The
BYTEqualifier can be used to force NASM to generate this form of the instruction. Recent
versions of NASM automatically optimise to this form if the immediate operand's value is known
during the assembling of that instruction, and fits in the range of a signed byte. The longer variant
can then still be forced using theSTRICT WORDor STRICT DWORDqualifier.

The Carry Flag is cleared byXOR. The Zero Flag is set according to whether the result is zero.

TheMMXinstructionPXOR(see section A.5.266) performs the same operation on the 64-bitMMX
registers.

A.5.336 XORPD: Bitwise Logical XOR of Double-Precision FP Values

XORPD xmm1,xmm2/m128 ; 66 0F 57 /r [WILLAMETTE,SSE2]

XORPDreturns a bit-wise logical XOR between the source and destination operands, storing
the result in the destination operand.

A.5.337 XORPS: Bitwise Logical XOR of Single-Precision FP Values

XORPS xmm1,xmm2/m128 ; 0F 57 /r [KATMAI,SSE]

XORPSreturns a bit-wise logical XOR between the source and destination operands, storing
the result in the destination operand.

125

Source Control Revision ID

hg ebafc620974d, from commit on at 2024-04-14 17:14:28 +0200

If this is in ecm's repository, you can find it at
https://hg.pushbx.org/ecm/insref/rev/ebafc620974d

126

https://hg.pushbx.org/ecm/insref/rev/ebafc620974d

Index

a16
38, 65, 71, 80, 84, 97, 105, 111, 116, 124

a32
38, 65, 71, 80, 84, 97, 105, 111, 116, 124

AAA 27
AAD 27
AAM 27
AAS 27
ADC 28
ADD 29
ADDPD 30
ADDPS 30
ADDSD 30
ADDSS 30
AND 30
ANDNPD 31
ANDNPS 32
ANDPD 32
ANDPS 32
ARPL 32
BOUND 33
BSF 33
BSR 33
BSWAP 33
BT 33
BTC 33
BTR 33
BTS 33
CALL 34
CBW 35
CDQ 35
CLC 35
CLD 35
CLFLUSH 35
CLI 35
CLTS 35
CMC 36
CMOVcc 36
CMP 36

CMPccPD 37
CMPccPS 37
CMPccSD 39
CMPccSS 40
CMPEQPD 37
CMPEQPS 37
CMPEQSD 39
CMPEQSS 40
CMPLEPD 37
CMPLEPS 37
CMPLESD 39
CMPLESS 40
CMPLTPD 37
CMPLTPS 37
CMPLTSD 39
CMPLTSS 40
CMPNEQPD 37
CMPNEQPS 37
CMPNEQSD 39
CMPNEQSS 40
CMPNLEPD 37
CMPNLEPS 37
CMPNLESD 39
CMPNLESS 40
CMPNLTPD 37
CMPNLTPS 37
CMPNLTSD 39
CMPNLTSS 40
CMPORDPD 37
CMPORDPS 37
CMPORDSD 39
CMPORDSS 40
CMPSB 38
CMPSD 38
CMPSW 38
CMPUNORDPD 37
CMPUNORDPS 37
CMPUNORDSD 39
CMPUNORDSS 40

127

CMPXCHG 40
CMPXCHG486 40
CMPXCHG8B 41
COMISD 41
COMISS 41
conditional jump 67
condition codes 18, 20, 67
Condition Predicates 21, 37, 38, 39, 40
Control Flags 22
Control registers 20
CPUID 42
CR0 71, 114
CVTDQ2PD 42
CVTDQ2PS 43
CVTPD2DQ 43
CVTPD2PI 43
CVTPD2PS 43
CVTPI2PD 44
CVTPI2PS 44
CVTPS2DQ 44
CVTPS2PD 44
CVTPS2PI 44
CVTSD2SI 45
CVTSD2SS 45
CVTSI2SD 45
CVTSI2SS 45
CVTSS2SD 46
CVTSS2SI 46
CVTTPD2DQ 46
CVTTPD2PI 46
CVTTPS2DQ 47
CVTTPS2PI 47
CVTTSD2SI 47
CVTTSS2SI 47
CWD 35
CWDE 35
DAA 48
DAS 48
Debug registers 20
DEC 48
Direction flag 23
DIV 48
DIVPD 49
DIVPS 49
DIVSD 49
DIVSS 49
DN 23

effective address 23
EMMS 50
ENTER 50
FABS 50
FADD 51
FADDP 51
far call 34
far jump 68
FBLD 51
FBSTP 51
FCHS 51
FCLEX 51
FCMOVcc 51
FCOM 52
FCOMI 52
FCOMIP 52
FCOMP 52
FCOMPP 52
FCOS 53
FDECSTP 53
FDISI 53
FDIV 53
FDIVP 53
FDIVR 53
FDIVRP 53
FEMMS 54
FENI 53
FFREE 54
FIADD 54
FICOM 55
FICOMP 55
FIDIV 55
FIDIVR 55
FILD 55
FIMUL 55
FINCSTP 55
FINIT 56
FIST 55
FISTP 55
FISUB 56
FLD 56
FLDCW 57
FLDENV 57
FLDxx 56
floating-point registers 20
FMUL 57
FMULP 57

128

FNDISI 53
FNENI 53
FNINIT 56
FNOP 57
FPATAN 57
FPREM 58
FPREM1 58
FPTAN 57
FRNDINT 58
FRSTOR 58
FSAVE 58
FSCALE 58
FSETPM 58
FSIN 59
FSINCOS 59
FSQRT 59
FST 59
FSTCW 59
FSTENV 59
FSTP 59
FSTSW 60
FSUB 60
FSUBP 60
FSUBR 60
FSUBRP 60
FTST 60
FUCOMxx 61
FXAM 61
FXCH 61
FxDISI 53
FxENI 53
F2XM1 50
FXRSTOR 62
FXSAVE 62
FXTRACT 62
FYL2X 62
FYL2XP1 62
general purpose register 17
HLT 62
IBTS 63
ICEBP 66
IDIV 63
idle 62
immediate operand 17
IMUL 63
IN 64
INC 64

INSB 65
INSD 65
INSW 65
INT 66
INT01 66
INT1 66
INT3 66
Interrupt flag 23
interrupt lockout 23
INTO 66
INVD 66
INVLPG 66
IRET 67
IRETD 67
IRETW 67
Jcc 67
JCXZ 67
JECXZ 67
JMP 68
LAHF 68
LAR 69
LDMXCSR 69
LDS 69
LEA 69
LEAVE 70
LES 69
LFENCE 70
LFS 69
LGDT 70
LGS 69
LIDT 70
LLDT 70
LMSW 71
LOADALL 71
LOADALL286 71
LODSB 71
LODSD 71
LODSW 71
LOOP 72
LOOPE 72
LOOPNE 72
LOOPNZ 72
LOOPZ 72
LSL 72
LSS 69
LTR 72
Machine Status Word 71, 114

129

MASKMOVDQU 73
MASKMOVQ 73
MAXPD 73
MAXPS 73
MAXSD 73
MAXSS 73
memory reference 17
MFENCE 74
MINPD 74
MINPS 74
MINSD 74
MINSS 75
MMX registers 20
ModR/M byte 18, 23
MOV 75
MOVAPD 76
MOVAPS 76
MOVD 76
MOVDQA 77
MOVDQ2Q 76
MOVDQU 77
MOVHLPS 77
MOVHPD 77
MOVHPS 77
MOVLHPS 78
MOVLPD 78
MOVLPS 78
MOVMSKPD 79
MOVMSKPS 79
MOVNTDQ 79
MOVNTI 79
MOVNTPD 79
MOVNTPS 79
MOVNTQ 79
MOVQ 80
MOVQ2DQ 80
MOVSB 80
MOVSD 80, 81
MOVSS 81
MOVSW 80
MOVSX 81
MOV to SS 23
MOVUPD 81
MOVUPS 82
MOVZX 81
MUL 82
MULPD 82

MULPS 82
MULSD 82
MULSS 82
near call 34
near jump 68
NEG 83
NOP 83
NOT 83
OR 83
ORPD 84
ORPS 84
OUT 84
OUTSB 84
OUTSD 84
OUTSW 84
PACKSSDW 85
PACKSSWB 85
PACKUSWB 85
PADDB 86
PADDD 86
PADDQ 86
PADDSB 86
PADDSIW 86
PADDSW 86
PADDUSB 87
PADDUSW 87
PADDW 86
PAND 87
PANDN 87
PAUSE 87
PAVEB 87
PAVGB 88
PAVGUSB 88
PAVGW 88
PCMPxx 88
PDISTIB 89
PEXTRW 89
PFACC 90
PFADD 90
PFCMPEQ 90
PFCMPGE 90
PFCMPGT 90
PFCMPxx 90
PF2ID 89
PF2IW 90
PFMAX 90
PFMIN 91

130

PFMUL 91
PFNACC 91
PFPNACC 91
PFRCP 91
PFRCPIT1 92
PFRCPIT2 92
PFRSQIT1 92
PFRSQRT 92
PFSUB 93
PFSUBR 93
PI2FD 93
PI2FW 93
PINSRW 93
PMACHRIW 93
PMADDWD 94
PMAGW 94
PMAXSW 94
PMAXUB 95
PMINSW 95
PMINUB 95
PMOVMSKB 95
PMULHRIW 95
PMULHRWA 96
PMULHRWC 95
PMULHUW 96
PMULHW 96
PMULLW 96
PMULUDQ 96
PMVccZB 97
POP 97
POPA 98
POPAD 98
POPAW 98
POPAx 98
POPF 98
POPFD 98
POPFW 98
POPFx 98
POP to SS 23
POR 98
PREFETCH 98
PREFETCHh 99
PREFETCHNTA 99
PREFETCHT0 99
PREFETCHT1 99
PREFETCHT2 99
PSADBW 99

PSHUFD 99
PSHUFHW 99
PSHUFLW 100
PSHUFW 100
PSLLx 100
PSRAx 101
PSRLx 101
PSUBSIW 103
PSUBSxx 102
PSUBUSx 102
PSUBx 102
PSWAPD 103
PSWAPW 103
PUNPCKxxx 103
PUSH 104
PUSHA 105
PUSHAD 105
PUSHAW 105
PUSHAx 105
PUSHF 106
PUSHFD 105
PUSHFW 105
PUSHFx 105
PXOR 106
RCL 106
RCPPS 106
RCPSS 107
RCR 106
RDMSR 107
RDPMC 107
RDSHR 107
RDTSC 107
register pop 97
register push 105
repeated string operation 23
restricted memory references 18
RET 107
RETF 107
RETN 107
REX 25
ROL 108
ROR 108
RPL 32
RSDC 108
RSLDT 108
RSM 108
RSQRTPS 108

131

RSQRTSS 109
RSTS 109
SAHF 109
SAL 109
SALC 110
SAR 109
SBB 110
SCASB 111
SCASD 111
SCASW 111
Segment registers 20
SETcc 111
SFENCE 111
SGDT 112
SHL 112
SHLD 113
short jump 67, 68, 72
SHR 112
SHRD 113
SHUFPD 113
SHUFPS 114
SIB byte 18, 23
SIDT 112
SLDT 112
SMI 114
SMINT 114
SMINTOLD 114
SMSW 114
SQRTPD 114
SQRTPS 115
SQRTSD 115
SQRTSS 115
SSE Condition Predicates

21, 37, 38, 39, 40
stack frame 50, 70
Status Flags 22
STC 115
STD 115
STI 115
STMXCSR 115
STOSB 115
STOSD 115
STOSW 115
STR 116
SUB 116
SUBPD 117
SUBPS 117

SUBSD 117
SUBSS 117
SVDC 118
SVLDT 118
SVTS 118
SYSCALL 118
SYSENTER 118
SYSEXIT 119
SYSRET 120
TEST 120
Test registers 20
Trace flag 23
UCOMISD 120
UCOMISS 121
UD0 121
UD1 121
UD2 121
UMOV 121
UNPCKHPD 121
UNPCKHPS 122
UNPCKLPD 122
UNPCKLPS 122
UP 23
VERR 122
VERW 122
WAIT 123
WBINVD 123
WRMSR 123
WRSHR 123
XADD 123
XBTS 123
XCHG 124
XLATB 124
XMM (SSE) registers 20
XOR 124
XORPD 125
XORPS 125

132

	NASM 2.05 based x86 Instruction Reference
	Contents
	Section 1: License
	Appendix A: x86 Instruction Reference
	A.1 Key to Operand Specifications
	A.2 Key to Opcode Descriptions
	A.2.1 Register Values
	A.2.2 Condition Codes
	A.2.3 SSE Condition Predicates
	A.2.4 Status Flags
	A.2.5 Control Flags
	A.2.5.1 IF - Interrupt flag
	A.2.5.2 DF - Direction flag
	A.2.5.3 TF - Trace flag

	A.2.6 Effective Address Encoding: ModR/M and SIB
	A.2.6.1 ModR/M encoding a register
	A.2.6.2 Memory a16 ModR/M encoding
	A.2.6.3 Memory a32 ModR/M and SIB encoding

	A.2.7 Register Extensions: The REX Prefix

	A.3 Key to Instruction Flags
	A.4 Emulator notes
	A.4.1 Common corner cases
	A.4.2 Emulator call encodings

	A.5 x86 Instruction Set
	A.5.1 AAA, AAS, AAM, AAD: ASCII Adjustments
	A.5.2 ADC: Add with Carry
	A.5.3 ADD: Add Integers
	A.5.4 ADDPD: ADD Packed Double-Precision FP Values
	A.5.5 ADDPS: ADD Packed Single-Precision FP Values
	A.5.6 ADDSD: ADD Scalar Double-Precision FP Values
	A.5.7 ADDSS: ADD Scalar Single-Precision FP Values
	A.5.8 AND: Bitwise AND
	A.5.9 ANDNPD: Bitwise Logical AND NOT of Packed Double-Precision FP Values
	A.5.10 ANDNPS: Bitwise Logical AND NOT of Packed Single-Precision FP Values
	A.5.11 ANDPD: Bitwise Logical AND For Single FP
	A.5.12 ANDPS: Bitwise Logical AND For Single FP
	A.5.13 ARPL: Adjust RPL Field of Selector
	A.5.14 BOUND: Check Array Index against Bounds
	A.5.15 BSF, BSR: Bit Scan
	A.5.16 BSWAP: Byte Swap
	A.5.17 BT, BTC, BTR, BTS: Bit Test
	A.5.18 CALL: Call Subroutine
	A.5.19 CBW, CWD, CDQ, CWDE: Sign Extensions
	A.5.20 CLC, CLD, CLI, CLTS: Clear Flags
	A.5.21 CLFLUSH: Flush Cache Line
	A.5.22 CMC: Complement Carry Flag
	A.5.23 CMOVcc: Conditional Move
	A.5.24 CMP: Compare Integers
	A.5.25 CMPccPD: Packed Double-Precision FP Compare
	A.5.26 CMPccPS: Packed Single-Precision FP Compare
	A.5.27 CMPSB, CMPSW, CMPSD: Compare Strings
	A.5.27.1 Pseudo-code examples

	A.5.28 CMPccSD: Scalar Double-Precision FP Compare
	A.5.29 CMPccSS: Scalar Single-Precision FP Compare
	A.5.30 CMPXCHG, CMPXCHG486: Compare and Exchange
	A.5.31 CMPXCHG8B: Compare and Exchange Eight Bytes
	A.5.32 COMISD: Scalar Ordered Double-Precision FP Compare and Set EFLAGS
	A.5.33 COMISS: Scalar Ordered Single-Precision FP Compare and Set EFLAGS
	A.5.34 CPUID: Get CPU Identification Code
	A.5.35 CVTDQ2PD: Packed Signed INT32 to Packed Double-Precision FP Conversion
	A.5.36 CVTDQ2PS: Packed Signed INT32 to Packed Single-Precision FP Conversion
	A.5.37 CVTPD2DQ: Packed Double-Precision FP to Packed Signed INT32 Conversion
	A.5.38 CVTPD2PI: Packed Double-Precision FP to Packed Signed INT32 Conversion
	A.5.39 CVTPD2PS: Packed Double-Precision FP to Packed Single-Precision FP Conversion
	A.5.40 CVTPI2PD: Packed Signed INT32 to Packed Double-Precision FP Conversion
	A.5.41 CVTPI2PS: Packed Signed INT32 to Packed Single-FP Conversion
	A.5.42 CVTPS2DQ: Packed Single-Precision FP to Packed Signed INT32 Conversion
	A.5.43 CVTPS2PD: Packed Single-Precision FP to Packed Double-Precision FP Conversion
	A.5.44 CVTPS2PI: Packed Single-Precision FP to Packed Signed INT32 Conversion
	A.5.45 CVTSD2SI: Scalar Double-Precision FP to Signed INT32 Conversion
	A.5.46 CVTSD2SS: Scalar Double-Precision FP to Scalar Single-Precision FP Conversion
	A.5.47 CVTSI2SD: Signed INT32 to Scalar Double-Precision FP Conversion
	A.5.48 CVTSI2SS: Signed INT32 to Scalar Single-Precision FP Conversion
	A.5.49 CVTSS2SD: Scalar Single-Precision FP to Scalar Double-Precision FP Conversion
	A.5.50 CVTSS2SI: Scalar Single-Precision FP to Signed INT32 Conversion
	A.5.51 CVTTPD2DQ: Packed Double-Precision FP to Packed Signed INT32 Conversion with Truncation
	A.5.52 CVTTPD2PI: Packed Double-Precision FP to Packed Signed INT32 Conversion with Truncation
	A.5.53 CVTTPS2DQ: Packed Single-Precision FP to Packed Signed INT32 Conversion with Truncation
	A.5.54 CVTTPS2PI: Packed Single-Precision FP to Packed Signed INT32 Conversion with Truncation
	A.5.55 CVTTSD2SI: Scalar Double-Precision FP to Signed INT32 Conversion with Truncation
	A.5.56 CVTTSS2SI: Scalar Single-Precision FP to Signed INT32 Conversion with Truncation
	A.5.57 DAA, DAS: Decimal Adjustments
	A.5.58 DEC: Decrement Integer
	A.5.59 DIV: Unsigned Integer Divide
	A.5.60 DIVPD: Packed Double-Precision FP Divide
	A.5.61 DIVPS: Packed Single-Precision FP Divide
	A.5.62 DIVSD: Scalar Double-Precision FP Divide
	A.5.63 DIVSS: Scalar Single-Precision FP Divide
	A.5.64 EMMS: Empty MMX State
	A.5.65 ENTER: Create Stack Frame
	A.5.66 F2XM1: Calculate 2**X-1
	A.5.67 FABS: Floating-Point Absolute Value
	A.5.68 FADD, FADDP: Floating-Point Addition
	A.5.69 FBLD, FBSTP: BCD Floating-Point Load and Store
	A.5.70 FCHS: Floating-Point Change Sign
	A.5.71 FCLEX, FNCLEX: Clear Floating-Point Exceptions
	A.5.72 FCMOVcc: Floating-Point Conditional Move
	A.5.73 FCOM, FCOMP, FCOMPP, FCOMI, FCOMIP: Floating-Point Compare
	A.5.74 FCOS: Cosine
	A.5.75 FDECSTP: Decrement Floating-Point Stack Pointer
	A.5.76 FxDISI, FxENI: Disable and Enable Floating-Point Interrupts
	A.5.77 FDIV, FDIVP, FDIVR, FDIVRP: Floating-Point Division
	A.5.78 FEMMS: Faster Enter/Exit of the MMX or floating-point state
	A.5.79 FFREE: Flag Floating-Point Register as Unused
	A.5.80 FIADD: Floating-Point/Integer Addition
	A.5.81 FICOM, FICOMP: Floating-Point/Integer Compare
	A.5.82 FIDIV, FIDIVR: Floating-Point/Integer Division
	A.5.83 FILD, FIST, FISTP: Floating-Point/Integer Conversion
	A.5.84 FIMUL: Floating-Point/Integer Multiplication
	A.5.85 FINCSTP: Increment Floating-Point Stack Pointer
	A.5.86 FINIT, FNINIT: initialize Floating-Point Unit
	A.5.87 FISUB: Floating-Point/Integer Subtraction
	A.5.88 FLD: Floating-Point Load
	A.5.89 FLDxx: Floating-Point Load Constants
	A.5.90 FLDCW: Load Floating-Point Control Word
	A.5.91 FLDENV: Load Floating-Point Environment
	A.5.92 FMUL, FMULP: Floating-Point Multiply
	A.5.93 FNOP: Floating-Point No Operation
	A.5.94 FPATAN, FPTAN: Arctangent and Tangent
	A.5.95 FPREM, FPREM1: Floating-Point Partial Remainder
	A.5.96 FRNDINT: Floating-Point Round to Integer
	A.5.97 FSAVE, FRSTOR: Save/Restore Floating-Point State
	A.5.98 FSCALE: Scale Floating-Point Value by Power of Two
	A.5.99 FSETPM: Set Protected Mode
	A.5.100 FSIN, FSINCOS: Sine and Cosine
	A.5.101 FSQRT: Floating-Point Square Root
	A.5.102 FST, FSTP: Floating-Point Store
	A.5.103 FSTCW: Store Floating-Point Control Word
	A.5.104 FSTENV: Store Floating-Point Environment
	A.5.105 FSTSW: Store Floating-Point Status Word
	A.5.106 FSUB, FSUBP, FSUBR, FSUBRP: Floating-Point Subtract
	A.5.107 FTST: Test ST0 Against Zero
	A.5.108 FUCOMxx: Floating-Point Unordered Compare
	A.5.109 FXAM: Examine Class of Value in ST0
	A.5.110 FXCH: Floating-Point Exchange
	A.5.111 FXRSTOR: Restore FP, MMX and SSE State
	A.5.112 FXSAVE: Store FP, MMX and SSE State
	A.5.113 FXTRACT: Extract Exponent and Significand
	A.5.114 FYL2X, FYL2XP1: Compute Y times Log2(X) or Log2(X+1)
	A.5.115 HLT: Halt Processor
	A.5.116 IBTS: Insert Bit String
	A.5.117 IDIV: Signed Integer Divide
	A.5.118 IMUL: Signed Integer Multiply
	A.5.119 IN: Input from I/O Port
	A.5.120 INC: Increment Integer
	A.5.121 INSB, INSW, INSD: Input String from I/O Port
	A.5.121.1 Pseudo-code examples

	A.5.122 INT: Software Interrupt
	A.5.123 INT3, INT1, ICEBP, INT01: Breakpoints
	A.5.124 INTO: Interrupt if Overflow
	A.5.125 INVD: Invalidate Internal Caches
	A.5.126 INVLPG: Invalidate TLB Entry
	A.5.127 IRET, IRETW, IRETD: Return from Interrupt
	A.5.128 Jcc: Conditional Branch
	A.5.129 JCXZ, JECXZ: Jump if CX/ECX Zero
	A.5.130 JMP: Jump
	A.5.131 LAHF: Load AH from Flags
	A.5.132 LAR: Load Access Rights
	A.5.133 LDMXCSR: Load Streaming SIMD Extension Control/Status
	A.5.134 LDS, LES, LFS, LGS, LSS: Load Far Pointer
	A.5.135 LEA: Load Effective Address
	A.5.136 LEAVE: Destroy Stack Frame
	A.5.137 LFENCE: Load Fence
	A.5.138 LGDT, LIDT, LLDT: Load Descriptor Tables
	A.5.139 LMSW: Load/Store Machine Status Word
	A.5.140 LOADALL, LOADALL286: Load Processor State
	A.5.141 LODSB, LODSW, LODSD: Load from String
	A.5.141.1 Pseudo-code examples

	A.5.142 LOOP, LOOPE, LOOPZ, LOOPNE, LOOPNZ: Loop with Counter
	A.5.143 LSL: Load Segment Limit
	A.5.144 LTR: Load Task Register
	A.5.145 MASKMOVDQU: Byte Mask Write
	A.5.146 MASKMOVQ: Byte Mask Write
	A.5.147 MAXPD: Return Packed Double-Precision FP Maximum
	A.5.148 MAXPS: Return Packed Single-Precision FP Maximum
	A.5.149 MAXSD: Return Scalar Double-Precision FP Maximum
	A.5.150 MAXSS: Return Scalar Single-Precision FP Maximum
	A.5.151 MFENCE: Memory Fence
	A.5.152 MINPD: Return Packed Double-Precision FP Minimum
	A.5.153 MINPS: Return Packed Single-Precision FP Minimum
	A.5.154 MINSD: Return Scalar Double-Precision FP Minimum
	A.5.155 MINSS: Return Scalar Single-Precision FP Minimum
	A.5.156 MOV: Move Data
	A.5.157 MOVAPD: Move Aligned Packed Double-Precision FP Values
	A.5.158 MOVAPS: Move Aligned Packed Single-Precision FP Values
	A.5.159 MOVD: Move Doubleword to/from MMX Register
	A.5.160 MOVDQ2Q: Move Quadword from XMM to MMX register.
	A.5.161 MOVDQA: Move Aligned Double Quadword
	A.5.162 MOVDQU: Move Unaligned Double Quadword
	A.5.163 MOVHLPS: Move Packed Single-Precision FP High to Low
	A.5.164 MOVHPD: Move High Packed Double-Precision FP
	A.5.165 MOVHPS: Move High Packed Single-Precision FP
	A.5.166 MOVLHPS: Move Packed Single-Precision FP Low to High
	A.5.167 MOVLPD: Move Low Packed Double-Precision FP
	A.5.168 MOVLPS: Move Low Packed Single-Precision FP
	A.5.169 MOVMSKPD: Extract Packed Double-Precision FP Sign Mask
	A.5.170 MOVMSKPS: Extract Packed Single-Precision FP Sign Mask
	A.5.171 MOVNTDQ: Move Double Quadword Non Temporal
	A.5.172 MOVNTI: Move Doubleword Non Temporal
	A.5.173 MOVNTPD: Move Aligned Four Packed Single-Precision FP Values Non Temporal
	A.5.174 MOVNTPS: Move Aligned Four Packed Single-Precision FP Values Non Temporal
	A.5.175 MOVNTQ: Move Quadword Non Temporal
	A.5.176 MOVQ: Move Quadword to/from MMX Register
	A.5.177 MOVQ2DQ: Move Quadword from MMX to XMM register.
	A.5.178 MOVSB, MOVSW, MOVSD: Move String
	A.5.178.1 Pseudo-code examples

	A.5.179 MOVSD: Move Scalar Double-Precision FP Value
	A.5.180 MOVSS: Move Scalar Single-Precision FP Value
	A.5.181 MOVSX, MOVZX: Move Data with Sign or Zero Extend
	A.5.182 MOVUPD: Move Unaligned Packed Double-Precision FP Values
	A.5.183 MOVUPS: Move Unaligned Packed Single-Precision FP Values
	A.5.184 MUL: Unsigned Integer Multiply
	A.5.185 MULPD: Packed Single-FP Multiply
	A.5.186 MULPS: Packed Single-FP Multiply
	A.5.187 MULSD: Scalar Single-FP Multiply
	A.5.188 MULSS: Scalar Single-FP Multiply
	A.5.189 NEG, NOT: Two's and Ones' Complement
	A.5.190 NOP: No Operation
	A.5.191 OR: Bitwise OR
	A.5.192 ORPD: Bit-wise Logical OR of Double-Precision FP Data
	A.5.193 ORPS: Bit-wise Logical OR of Single-Precision FP Data
	A.5.194 OUT: Output Data to I/O Port
	A.5.195 OUTSB, OUTSW, OUTSD: Output String to I/O Port
	A.5.195.1 Pseudo-code examples

	A.5.196 PACKSSDW, PACKSSWB, PACKUSWB: Pack Data
	A.5.197 PADDB, PADDW, PADDD: Add Packed Integers
	A.5.198 PADDQ: Add Packed Quadword Integers
	A.5.199 PADDSB, PADDSW: Add Packed Signed Integers With Saturation
	A.5.200 PADDSIW: MMX Packed Addition to Implicit Destination
	A.5.201 PADDUSB, PADDUSW: Add Packed Unsigned Integers With Saturation
	A.5.202 PAND, PANDN: MMX Bitwise AND and AND-NOT
	A.5.203 PAUSE: Spin Loop Hint
	A.5.204 PAVEB: MMX Packed Average
	A.5.205 PAVGB PAVGW: Average Packed Integers
	A.5.206 PAVGUSB: Average of unsigned packed 8-bit values
	A.5.207 PCMPxx: Compare Packed Integers.
	A.5.208 PDISTIB: MMX Packed Distance and Accumulate with Implied Register
	A.5.209 PEXTRW: Extract Word
	A.5.210 PF2ID: Packed Single-Precision FP to Integer Convert
	A.5.211 PF2IW: Packed Single-Precision FP to Integer Word Convert
	A.5.212 PFACC: Packed Single-Precision FP Accumulate
	A.5.213 PFADD: Packed Single-Precision FP Addition
	A.5.214 PFCMPxx: Packed Single-Precision FP Compare
	A.5.215 PFMAX: Packed Single-Precision FP Maximum
	A.5.216 PFMIN: Packed Single-Precision FP Minimum
	A.5.217 PFMUL: Packed Single-Precision FP Multiply
	A.5.218 PFNACC: Packed Single-Precision FP Negative Accumulate
	A.5.219 PFPNACC: Packed Single-Precision FP Mixed Accumulate
	A.5.220 PFRCP: Packed Single-Precision FP Reciprocal Approximation
	A.5.221 PFRCPIT1: Packed Single-Precision FP Reciprocal, First Iteration Step
	A.5.222 PFRCPIT2: Packed Single-Precision FP Reciprocal/ Reciprocal Square Root, Second Iteration Step
	A.5.223 PFRSQIT1: Packed Single-Precision FP Reciprocal Square Root, First Iteration Step
	A.5.224 PFRSQRT: Packed Single-Precision FP Reciprocal Square Root Approximation
	A.5.225 PFSUB: Packed Single-Precision FP Subtract
	A.5.226 PFSUBR: Packed Single-Precision FP Reverse Subtract
	A.5.227 PI2FD: Packed Doubleword Integer to Single-Precision FP Convert
	A.5.228 PI2FW: Packed Word Integer to Single-Precision FP Convert
	A.5.229 PINSRW: Insert Word
	A.5.230 PMACHRIW: Packed Multiply and Accumulate with Rounding
	A.5.231 PMADDWD: MMX Packed Multiply and Add
	A.5.232 PMAGW: MMX Packed Magnitude
	A.5.233 PMAXSW: Packed Signed Integer Word Maximum
	A.5.234 PMAXUB: Packed Unsigned Integer Byte Maximum
	A.5.235 PMINSW: Packed Signed Integer Word Minimum
	A.5.236 PMINUB: Packed Unsigned Integer Byte Minimum
	A.5.237 PMOVMSKB: Move Byte Mask To Integer
	A.5.238 PMULHRWC, PMULHRIW: Multiply Packed 16-bit Integers With Rounding, and Store High Word
	A.5.239 PMULHRWA: Multiply Packed 16-bit Integers With Rounding, and Store High Word
	A.5.240 PMULHUW: Multiply Packed 16-bit Integers, and Store High Word
	A.5.241 PMULHW, PMULLW: Multiply Packed 16-bit Integers, and Store
	A.5.242 PMULUDQ: Multiply Packed Unsigned 32-bit Integers, and Store.
	A.5.243 PMVccZB: MMX Packed Conditional Move
	A.5.244 POP: Pop Data from Stack
	A.5.245 POPAx: Pop All General-Purpose Registers
	A.5.246 POPFx: Pop Flags Register
	A.5.247 POR: MMX Bitwise OR
	A.5.248 PREFETCH: Prefetch Data Into Caches
	A.5.249 PREFETCHh: Prefetch Data Into Caches
	A.5.250 PSADBW: Packed Sum of Absolute Differences
	A.5.251 PSHUFD: Shuffle Packed Doublewords
	A.5.252 PSHUFHW: Shuffle Packed High Words
	A.5.253 PSHUFLW: Shuffle Packed Low Words
	A.5.254 PSHUFW: Shuffle Packed Words
	A.5.255 PSLLx: Packed Data Bit Shift Left Logical
	A.5.256 PSRAx: Packed Data Bit Shift Right Arithmetic
	A.5.257 PSRLx: Packed Data Bit Shift Right Logical
	A.5.258 PSUBx: Subtract Packed Integers
	A.5.259 PSUBSxx, PSUBUSx: Subtract Packed Integers With Saturation
	A.5.260 PSUBSIW: MMX Packed Subtract with Saturation to Implied Destination
	A.5.261 PSWAPD: Swap Packed Data
	A.5.262 PUNPCKxxx: Unpack and Interleave Data
	A.5.263 PUSH: Push Data on Stack
	A.5.264 PUSHAx: Push All General-Purpose Registers
	A.5.265 PUSHFx: Push Flags Register
	A.5.266 PXOR: MMX Bitwise XOR
	A.5.267 RCL, RCR: Bitwise Rotate through Carry Bit
	A.5.268 RCPPS: Packed Single-Precision FP Reciprocal
	A.5.269 RCPSS: Scalar Single-Precision FP Reciprocal
	A.5.270 RDMSR: Read Model-Specific Registers
	A.5.271 RDPMC: Read Performance-Monitoring Counters
	A.5.272 RDSHR: Read SMM Header Pointer Register
	A.5.273 RDTSC: Read Time-Stamp Counter
	A.5.274 RET, RETF, RETN: Return from Procedure Call
	A.5.275 ROL, ROR: Bitwise Rotate
	A.5.276 RSDC: Restore Segment Register and Descriptor
	A.5.277 RSLDT: Restore Segment Register and Descriptor
	A.5.278 RSM: Resume from System-Management Mode
	A.5.279 RSQRTPS: Packed Single-Precision FP Square Root Reciprocal
	A.5.280 RSQRTSS: Scalar Single-Precision FP Square Root Reciprocal
	A.5.281 RSTS: Restore TSR and Descriptor
	A.5.282 SAHF: Store AH to Flags
	A.5.283 SAL, SAR: Bitwise Arithmetic Shifts
	A.5.284 SALC: Set AL from Carry Flag
	A.5.285 SBB: Subtract with Borrow
	A.5.286 SCASB, SCASW, SCASD: Scan String
	A.5.286.1 Pseudo-code examples

	A.5.287 SETcc: Set Register from Condition
	A.5.288 SFENCE: Store Fence
	A.5.289 SGDT, SIDT, SLDT: Store Descriptor Table Pointers
	A.5.290 SHL, SHR: Bitwise Logical Shifts
	A.5.291 SHLD, SHRD: Bitwise Double-Precision Shifts
	A.5.292 SHUFPD: Shuffle Packed Double-Precision FP Values
	A.5.293 SHUFPS: Shuffle Packed Single-Precision FP Values
	A.5.294 SMI: System Management Interrupt
	A.5.295 SMINT, SMINTOLD: Software SMM Entry (CYRIX)
	A.5.296 SMSW: Store Machine Status Word
	A.5.297 SQRTPD: Packed Double-Precision FP Square Root
	A.5.298 SQRTPS: Packed Single-Precision FP Square Root
	A.5.299 SQRTSD: Scalar Double-Precision FP Square Root
	A.5.300 SQRTSS: Scalar Single-Precision FP Square Root
	A.5.301 STC, STD, STI: Set Flags
	A.5.302 STMXCSR: Store Streaming SIMD Extension Control/Status
	A.5.303 STOSB, STOSW, STOSD: Store Byte to String
	A.5.303.1 Pseudo-code examples

	A.5.304 STR: Store Task Register
	A.5.305 SUB: Subtract Integers
	A.5.306 SUBPD: Packed Double-Precision FP Subtract
	A.5.307 SUBPS: Packed Single-Precision FP Subtract
	A.5.308 SUBSD: Scalar Single-FP Subtract
	A.5.309 SUBSS: Scalar Single-FP Subtract
	A.5.310 SVDC: Save Segment Register and Descriptor
	A.5.311 SVLDT: Save LDTR and Descriptor
	A.5.312 SVTS: Save TSR and Descriptor
	A.5.313 SYSCALL: Call Operating System
	A.5.314 SYSENTER: Fast System Call
	A.5.315 SYSEXIT: Fast Return From System Call
	A.5.316 SYSRET: Return From Operating System
	A.5.317 TEST: Test Bits (notional bitwise AND)
	A.5.318 UCOMISD: Unordered Scalar Double-Precision FP compare and set EFLAGS
	A.5.319 UCOMISS: Unordered Scalar Single-Precision FP compare and set EFLAGS
	A.5.320 UD0, UD1, UD2: Undefined Instruction
	A.5.321 UMOV: User Move Data
	A.5.322 UNPCKHPD: Unpack and Interleave High Packed Double-Precision FP Values
	A.5.323 UNPCKHPS: Unpack and Interleave High Packed Single-Precision FP Values
	A.5.324 UNPCKLPD: Unpack and Interleave Low Packed Double-Precision FP Data
	A.5.325 UNPCKLPS: Unpack and Interleave Low Packed Single-Precision FP Data
	A.5.326 VERR, VERW: Verify Segment Readability/Writability
	A.5.327 WAIT: Wait for Floating-Point Processor
	A.5.328 WBINVD: Write Back and Invalidate Cache
	A.5.329 WRMSR: Write Model-Specific Registers
	A.5.330 WRSHR: Write SMM Header Pointer Register
	A.5.331 XADD: Exchange and Add
	A.5.332 XBTS: Extract Bit String
	A.5.333 XCHG: Exchange
	A.5.334 XLATB: Translate Byte in Lookup Table
	A.5.335 XOR: Bitwise Exclusive OR
	A.5.336 XORPD: Bitwise Logical XOR of Double-Precision FP Values
	A.5.337 XORPS: Bitwise Logical XOR of Single-Precision FP Values

	Source Control Revision ID
	Index

