KEEPHOOK manual

2021 by C. Masloch. Usage of the works is permitted provided that this instrument is
retained with the works, so that any entity that uses the works is notified of this instrument.

DISCLAIMER: THE WORKS ARE WITHOUT WARRANTY.
This document has been compiled on 2024-11-29.

Contents

Section 1: Overview
Section 2: The long story
2.1 What is an interrupt?
2.2 What does it mean to hook an interrupt?
2.3 How about to unhook an interrupt?
2.4 Can we work around the unhook problem?
2.5 What is this "advanced" deinstallation about?
Section 3: The purpose of KEEPHOOK
3.1 Covering interrupt chains
3.2 Exposing interrupt chains
3.3 Uninstalling interrupt chains
3.4/X=NN switch (Set preferred multiplex number)
3.5/S=number switch (Set heap size)
3.6 Other switches
Section 4: Requirements
Section 5: Building

Source Control Revision ID

Section 1: Overview

TSR to keep hooks available. AMIS v3.6 compliant. Optimal installation, advanced
deinstallation method.

KEEPHOOK installs do-nothing interrupt handlers that always pass control to the next handler
in the interrupt chain. The purpose of this is to allow access to parts of an interrupt chain
otherwise obscured by incompatible TSRs.

Compatible TSRs employ the IBM Interrupt Sharing Protocol (IISP) interrupt entrypoint
headers to advertise their next handler pointer. This allows unhooking an interrupt handler even
when it is not the current topmost handler.

The KEEPHOOK entries, crucially, can be accessed from the Alternate Multiplex Interrupt
Specification (AMIS) interrupt list. KEEPHOOK allocates a multiplex number upon its
installation, and identifies itself with the AMIS product nanklEEEPHOOKand vendor name
‘ecm’.

2.1

Section 2: The long story

If you know some of these concepts already you may wish to skip some or all of the following
sections.

What is an interrupt?

Interrupts originate as a control-flow feature, originally for interrupting normal execution of a
program upon special conditions. These are called hardware interrupts. For example, a keyboard
device may initiate a hardware interrupt request (IRQ) to the CPU to indicate it has new data
available. That is, in the case of a keyboard, one or several new keypress or key release events.

The keyboard is actually numbered as the second IRQ (IRQ #1) on a typical 86-DOS system.
IRQ #0 is used for a timer tick. It is raised by default with a frequency of 18.2 Hz (nearly 64
kilo-binary = 65_536 times per hour). There are several other IRQ sources, up to 15 of which
can be differentiated by the dual-PIC setup of a typical IBM-PC-compatible 86-DOS machine.

When an IRQ is being serviced by the CPU, the CPU waits until such a time that it comes
upon an instruction boundary. (A repeated string operation counts as multiple instructions for
these purposes.) Then it saves some machine state onto the current stack. On an 8086 processor
those are the 16-bit flags register, the code segment, and the instruction pointer, for a total of 6
bytes. This interrupt stack frame can be used to return the control flow to the point that is being
interrupted. There is a dedicated "interrupt retuirét() instruction that performs this action.

Upon execution of an interrupt, after the stack frame is written a few control flags are modified.

On the 8086, the Interrupt Flag (IF) and Trace Flag (TF) are cleared.

Finally, to service the interrupt, a certain "far" address (16-bit code segment value and 16-bit
instruction pointer value) is read from a specific entry of a table, the Interrupt Vector Table.
The IVT is located in the random-access memory at linear address zero for the 8086. Loading
the CS:IP from the IVT is effectively an inter-segment branch to some code somewhere in
the 1088 KiB segmented address space. This code is called the interrupt handler, or Interrupt
Service Routine (ISR).

Typically, an interrupt handler servicing an IRQ will respond to the interrupt condition in some
way, such as to modify some memory. Aside from the interrupt stack frame (FL, CS, IP) the
handler may push further registers onto the stack to preserve their values. Later it can pop the
registers in the reverse order and then return to the interrupted code usirgg thenstruction.

During their design of the 8086, Intel provided for up to 256 different interrupt numbers. Each
interrupt number has a corresponding entry in the IVT. There is also an instruction,inalled

which can cause the processor to branch to a specified interrupt handler as if it was servicing an
IRQ. As opposed to the hardware interrupts, an interrupt causedihy amstruction is called

a software interrupt.

When 86-DOS was developed, it was decided that several software interrupt numbers would be
used for the purpose of a "system call" operation. The most well-known and common of these

4

2.2

2.3

software interrupts is interrupt 21h. It is used for most DOS service calls. Using a software
interrupt is useful to DOS due to several reasons.

The IVT can be used by any process without having to set up a segment register to point to any
OS data (freeing them up to be all used by the application), and also without having to copy any
sort of dispatcher or jump table into each process's code segment. Besides, the interrupt stack
frame allows for some state to be restored upon an interrupt return without more OS-side setup.

Software interrupts used as service dispatchers often will be utilised to return results in one or
more registers or status flags. They can also clobber registers. Unlike the typical use of hardware
interrupts not all registers need to be preserved by software interrupt handlers. This is because
the application knows when and that it usesdn instruction, and so can treat it like a function

call following a certain calling convention. Hardware interrupts can occur at most instruction
boundaries and are thus less alike ordinary function calls.

What does it mean to hook an interrupt?

Hooking an interrupt generally means to bend the address stored inan IVT entry so as to point to
a new interrupt handler. Once the address is updated, subsequent interrupt calls to the affected
interrupt will call the new handler.

DOS itself hooks several interrupts on start-up, including interrupt 21h. In this case, generally
DOS will not remember the address previously found in the IVT entry for that interrupt number.

However, there is a class of system extensions that falls into the category "Terminate and Stay
Resident” (TSR) programs. A TSR installs a resident part before terminating another part, called
the transient part. Thus it leaves resident a part of itself. Such programs may hook interrupts,
such as the DOS service interrupt 21h. More often than not, such resident software will retain

a segmented far pointer to the "next handler". This pointer is obtained from the corresponding

IVT entry before the entry is modified to hook the interrupt.

The next handler pointer can be used for three purposes. First, if the resident part is ever to be
uninstalled during a session then the program needs to have remembered the prior handler's
address to restore that address into the IVT entry. Second, upon whatever handling the resident
does when its interrupt handler is called, it may decide to "chain" the call to the prior handler. It
can do so using a direct or indirect jump branch. Third, the resident may call the prior handler by
emulating an interrupt call complete with a stack frame. This is obtained by runmoghd
instruction followed by a direct or indirect call branch. If the control flow returns from the
prior interrupt handler then the resident may do additional handling afterwards. This allows the
resident to do both pre- and post-processing of an interrupt service call.

How about to unhook an interrupt?

As alluded to, a TSR program may be instructed to uninstall its resident portion. Non-resident
software can also hook interrupts and may want to unhook them when it terminates.

Inthe simplest case, to unhook an interrupt means to take the "next handler" address the program
has stashed away, and write it to the IVT entry of the interrupt in question.

However, consider this: Let A be the program that hooked interrupt 21h. If a different program,

let's call it B, hooked the same interrupt at a point in time where A's handler already had been
hooked into the interrupt, then we end up with a chain of interrupt handlers that goes like

IVT -> B -> A -> DOS . If A naively restores its next handler pointer (which contains

5

2.4

2.5

the DOS's handler address) then the chain would change to be as fd¥dws> DOS. As
desired, A's handler no longer is in the chain. But B's handler also is no longer in the chain,
without B's awareness or consent.

If B alsois instructed to uninstall and naively restores its next handler pointer into the IVT then
the IVT will point to A's handler next. But by this time, the memory used by the resident A may
already have been freed and possibly re-used. Clearly, this is concerning.

In some cases it can be appropriate or desired to uninstall one's interrupt hook in this way.
However, more commonly it is better for the program A when trying to uninstall to check
whether its resident still provides the top-most handler for the used interrupt number. That is,
whether the IVT entry still points to A's resident handler, rather than elsewhere.

This introduces a failure condition: If, like before, B hooks the same interrupt after A has hooked
it, and then A is told to uninstall its resident, its IVT entry check will indicate that its resident
does not provide the top-most handler. Pending further options this must cause A to fail in part
or in full. It should report this and leave resident at least a minimal interrupt handler, in the
same spot that held the entrypoint for its full interrupt handler, so as not to disturb the interrupt
handler chain. That is, the address stored by B as its next handler pointer must remain valid.

Can we work around the unhook problem?

The problem with two TSRs both hooking the same interrupt is that one of them remembers a
pointer to the other. It is not enough to modify the IVT.

However, what if we had a program (call it C) that indicates in some way where its "next
handler" pointer lives? If A is directed to uninstall its resident portion, and C's is the top-most
handler, then A can follow C's next handler pointer and determine that it points to A's handler.
If C promises to use that particular pointer, and no other, to refer to A, then A gains an option.
It can modify C's pointer and update it with the next handler pointer of A itself. So we go from
IVT -> C -> A -> DOS tothe new chaitvT -> C -> DOS.

To automate the indication, the IBM Interrupt Sharing Protocol (IISP) was defined. It consists
of an 18-byte structure, of which 6 bytes are crucial. Those 6 are comprised first of a word (2-
byte) signature, the string "KB", at the address of the interrupt handler entrypoint plus six bytes.
And second, at the entrypoint address plus two bytes, a dword (4-byte) segmented far pointer.
This pointer is the sole reference to the next handler; if the resident C wants to unhook itself
(either from the IVT or another reference) or wants to call or chain to the next handler, it must
use the ISP header's field.

What is this "advanced" deinstallation about?

If you install the resident A first, and then the B mentioned earlier, A can no longer access the
reference to its interrupt handler. The same is true if you install A first, then C, and then B.
However, there is a way to install B after A and still access the reference to A.

For how to do that, first some words about the Alternate Multiplex Interrupt Specification
(AMIS). AMIS was defined by Ralf Brown to allow a common interface to TSRs with several
standard functions. Instead of overloading common software interrupts like interrupt 21h (DOS
services) or interrupt 2Fh (the traditional "multiplex” interrupt) with ever more special magic
functions, AMIS defines a new interface on the previously unused interrupt 2Dh.

Each AMIS program allocates a multiplex number out of 256 possible values upon installation,

6

choosing a number that is not yet used. To facilitate this, there is a common detection function,
the AMIS function 0, called "Installation Check". The multiplex number to check is written to
theAHregister, and the AMIS function number to call is put iAlio. Then the software interrupt
2Dhis called. Function O returns witL set to OFFh if the multiplex number isin use, but leaves
AL at 0 instead if it isn't. (Function O also returns a signature and version number in three more
registers but these don't matter to us.)

Another AMIS function is function 4, called "Determine Chained Interrupts"”. It can be called
once it has been detected that a multiplex number is in use. Again the multiplex number is passed
in AHand the function number IAL. Additionally, the querent must provide an interrupt number

to check in theéBL register. This function can return a pointer to an interrupt handler entrypoint,

or the address of an AMIS interrupt list, or other return values. It is assumed that AMIS TSRs'
interrupt handlers begin with an IISP header.

The AMIS interrupt list is made up of a number of 3-byte entries: The first byte specifies an
interrupt number, the second and third byte form a word that specifies an offset. The offset,
combined with the same segment as used to address the interrupt list itself, points to the
entrypoint of an interrupt handler that corresponds to the specified interrupt number. The last
entry of the list is the one with an interrupt number of 2Dh. (Note that it is not prohibited to
have multiple interrupt handlers for the same interrupt number, save interrupt 2Dh.)

Knowing that much, consider a case with a TSR program called D. It is an AMIS-compliant
TSR which allocates a multiplex number to be detected by AMIS function 0, and returns an
interrupt list upon being queried on AMIS function 4. Aside from interrupt 2Dh, it also hooks
interrupt 21h.

Now if you install the TSRs in the order A then D then B, you end up with an interrupt chain
forinterrupt 21h that goes lik/T -> B -> D -> A -> DOS . Ifyou tell the A program

to uninstall itself, it will determine that the IVT points to B, and B's handler does not start with
an ISP header. The advanced deinstallation method kicks in now: The deinstaller for A can
detect all AMIS multiplex numbers that are in use, then ask each resident AMIS TSR about its
handler for interrupt 21h using function 4. If it finds such a handler it can search the interrupt
chain starting at this handler.

In our case, A will detect the resident D, ask for its interrupt 21h handler with function
4, and receive the interrupt list. The interrupt list contains an entry for D's interrupt 21h
handler entrypoint. Searching the chain starting from D's handler, which has an IISP header,
allows A to find the reference to A's handler. Then A can uninstall its own handler from
the chain by updating the reference in D's IISP header. The interrupt chain is updated from
IVT -> B -> D -> A -> DOS tonow belVT -> B -> D -> DOS . The reference

that B holds to D remains valid.

3.1

3.2

Section 3: The purpose of KEEPHOOK

Installing KEEPHOOK is supposed to aid programs which employ the advanced deinstallation
method of searching for references to their interrupt handlers starting from the handlers
advertised by resident AMIS multiplexers. To this end, KEEPHOOK can set up handlers that
do nothing on their own and always immediately chain to the next handler. KEEPHOOK's

only handler that does something else is its interrupt 2Dh handler, which implements an AMIS
multiplexer.

KEEPHOOK can be instructed to "cover" interrupt chains (which is the default operation),
to "expose" chains, or to "uninstall” its handlers if reachable. It is also valid to specify both
uninstalling and covering at the same time; first any reachable handlers will be uninstalled, then
the same interrupts will be covered.

Interrupt numbers can be specified onthe command line as one- or two-digit hexadecimal values,
separated by blanks. It is also valid to specify the keywdkdl which is evaluated to mean

all interrupt numbers which KEEPHOOK currently has handlers installed for. For the /C and
/E switches the default operation if no interrupt numbers are specified is to acAlaks Was
specified.

Covering interrupt chains

Covering means insuring that the top-most interrupt handler for an interrupt points to a handler
provided by KEEPHOOK. That is, to make the IVT point to KEEPHOOK. If this is not yet true
then KEEPHOOK tries to install a new handler as the top-most one. (This requires an unused
entry in KEEPHOOK's interrupt list and a block from its heap to install a new handler.) This is
the same operation as installing a regular TSR.

Covering is indicated by specifying th&C switch. Covering may be specified when
KEEPHOOK is already resident or when it is to be installed. If no operation is specified by
switches (that is, none of th€ , /E , /U, or/R switches is present) but any interrupt number
or theALL keyword is present then the default operation is covering.

Exposing interrupt chains

Exposing means to make sure that the top-most interrupt handlestiene provided by
KEEPHOOK. If it currently is, it will be uninstalled. (If several handlers in a row come to

be installed consecutively by the same KEEPHOOK instance, and the first one is the topmost
handler, then exposing the interrupt will uninstall the entire row.) This is the same operation as
naively uninstalling a TSR, if possible. It allows access to a subsequent handler by a TSR that
doesn't follow IISP header chains.

Exposing is indicated by specifying th& switch. Exposing may not be combined with
covering. Exposing is only valid if KEEPHOOK is already resident.

8

3.3 Uninstalling interrupt chains

Uninstalling means to remove all handlers provided by KEEPHOOK, where possible. To this
end, KEEPHOOK itself uses the advanced deinstallation method.

Uninstalling is indicated by specifying tllg switch (or the aliagR switch). Uninstalling may
be combined with covering, but not with exposing. Uninstalling is only valid if KEEPHOOK is
already resident.

If the /U switch is given without any interrupt number specifications and witiiGytthen
KEEPHOOK will attempt to fully uninstall itself. This only succeeds if all installed handlers
succeed in unhooking. (If uninstalling fails, it will still have unhooked all reachable handlers.)

3.4 /X=NN switch (Set preferred multiplex number)

Attempt resident detection and allocation of multiplex number NN first. NN is a one-digit or
two-digit hexadecimal number.

During allocation of a multiplex number while installing a new instance of KEEPHOOK, the
number specified by thX= switch is checked first. After that, every possible multiplex number
is checked, counting up from 00h to FFh. (Absent/Xwe switch this means multiplex numbers
are allocated in ascending order.)

During detection of already resident KEEPHOOK instances, a multiplex number specified by
the/X= switch is checked first. After that, every possible multiplex number is checked in order,
counting down from FFh to 00h. (Absent thé= switch this means the instance that was last
installed is found first.)

3.5 /S=number switch (Set heap size)
Currently only supported when installing KEEPHOOK. Set heap size to number (in decimal).

The heap is used for the AMIS interrupt list and the interrupt handlers. Each heap block is 24
bytes large. The interrupt list takes 3 bytes per handler. (One interrupt list entry is taken up by
the interrupt 2Dh handler.) Each interrupt handler takes up one list entry and one heap block. (It
just so happens that a maximally compatible ISP header plus an indirect far jump instruction
take up exactly 24 bytes.)

The interrupt list is allocated at the beginning of the heap and is always large enough to hold
entries for all remaining heap blocks. The heap must be composed of at least 2 blocks (one for
the list and the other for a handler). The default heap size is 8 blocks, just enough for 7 interrupt
handlers.

3.6 Other switches
/O switch
Do not install KEEPHOOK if it is not yet installed
/3 switch
If installing KEEPHOOK do not try to allocate an UMB

9

/N switch

Install a new KEEPHOOK instance even if one is already installed

10

Section 4: Requirements

» 86-DOS system compatible to MS-DOS version 2 or later (version 5 or later recommended)
» 8088/8086 processor or higher

* 20 KiB of memory for the transient KEEPHOOK program

* 160 bytes of memory plus about 27 bytes per handler for the resident KEEPHOOK program

11

Section 5: Building

1. Check out tip revision of the hg repo to a directory

2. Check out Imacros into a sibling directory (that is, the .mac files should be located in the
path../Imacros/ as seen from the keephook directory)

3. From the keephook directory rutmak.sh (needs bash and nasm)

4. Alternatively, from the keephook directory run
nasm -l ../Imacros/ transien.asm -o keephook.com

5. From the keephook/doc subdirectory rimak.sh (needs bash and hg and halibut)

12

https://hg.pushbx.org/ecm/lmacros/

Source Control Revision ID

hg f8b02aa28676, from commit on at 2024-11-29 22:30:25 +0100

If this is in ecm's repository, you can find it at
https://hg.pushbx.org/ecm/keephook/rev/f8b02aa28676

13

https://hg.pushbx.org/ecm/keephook/rev/f8b02aa28676

	KEEPHOOK manual
	Contents
	Section 1: Overview
	Section 2: The long story
	2.1 What is an interrupt?
	2.2 What does it mean to hook an interrupt?
	2.3 How about to unhook an interrupt?
	2.4 Can we work around the unhook problem?
	2.5 What is this "advanced" deinstallation about?

	Section 3: The purpose of KEEPHOOK
	3.1 Covering interrupt chains
	3.2 Exposing interrupt chains
	3.3 Uninstalling interrupt chains
	3.4 /X=NN switch (Set preferred multiplex number)
	3.5 /S=number switch (Set heap size)
	3.6 Other switches

	Section 4: Requirements
	Section 5: Building
	Source Control Revision ID

