
SHUFHOOK manual

2021 by C. Masloch. Usage of the works is permitted provided that this instrument is
retained with the works, so that any entity that uses the works is notified of this instrument.
DISCLAIMER: THE WORKS ARE WITHOUT WARRANTY.

This document has been compiled on 2023-05-19.
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Section 1: Overview

This program allows shuffling around interrupt handlers by utilising IBM Interrupt Sharing
Protocol (IISP) headers and Alternate Multiplex Interrupt Specification (AMIS) interrupt lists.

Currently, only one operation is implemented. It is called "Bubbling". It is specified by the /B
switch. To bubble means to swap around handlers so as to expose a specific handler as the
topmost handler.
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Section 2: The long story

This is a copy of the same chapter in the KEEPHOOK manual.If you know some of these
concepts already you may wish to skip some or all of the following sections.

2.1 What is an interrupt?
Interrupts originate as a control-flow feature, originally for interrupting normal execution of a
program upon special conditions. These are called hardware interrupts. For example, a keyboard
device may initiate a hardware interrupt request (IRQ) to the CPU to indicate it has new data
available. That is, in the case of a keyboard, one or several new keypress or key release events.

The keyboard is actually numbered as the second IRQ (IRQ #1) on a typical 86-DOS system.
IRQ #0 is used for a timer tick. It is raised by default with a frequency of 18.2 Hz (nearly 64
kilo-binary = 65_536 times per hour). There are several other IRQ sources, up to 15 of which
can be differentiated by the dual-PIC setup of a typical IBM-PC-compatible 86-DOS machine.

When an IRQ is being serviced by the CPU, the CPU waits until such a time that it comes
upon an instruction boundary. (A repeated string operation counts as multiple instructions for
these purposes.) Then it saves some machine state onto the current stack. On an 8086 processor
those are the 16-bit flags register, the code segment, and the instruction pointer, for a total of 6
bytes. This interrupt stack frame can be used to return the control flow to the point that is being
interrupted. There is a dedicated "interrupt return" (iret ) instruction that performs this action.
Upon execution of an interrupt, after the stack frame is written a few control flags are modified.
On the 8086, the Interrupt Flag (IF) and Trace Flag (TF) are cleared.

Finally, to service the interrupt, a certain "far" address (16-bit code segment value and 16-bit
instruction pointer value) is read from a specific entry of a table, the Interrupt Vector Table.
The IVT is located in the random-access memory at linear address zero for the 8086. Loading
the CS:IP from the IVT is effectively an inter-segment branch to some code somewhere in
the 1088 KiB segmented address space. This code is called the interrupt handler, or Interrupt
Service Routine (ISR).

Typically, an interrupt handler servicing an IRQ will respond to the interrupt condition in some
way, such as to modify some memory. Aside from the interrupt stack frame (FL, CS, IP) the
handler may push further registers onto the stack to preserve their values. Later it can pop the
registers in the reverse order and then return to the interrupted code using theiret instruction.

During their design of the 8086, Intel provided for up to 256 different interrupt numbers. Each
interrupt number has a corresponding entry in the IVT. There is also an instruction, calledint ,
which can cause the processor to branch to a specified interrupt handler as if it was servicing an
IRQ. As opposed to the hardware interrupts, an interrupt caused by anint instruction is called
a software interrupt.

When 86-DOS was developed, it was decided that several software interrupt numbers would be
used for the purpose of a "system call" operation. The most well-known and common of these
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software interrupts is interrupt 21h. It is used for most DOS service calls. Using a software
interrupt is useful to DOS due to several reasons.

The IVT can be used by any process without having to set up a segment register to point to any
OS data (freeing them up to be all used by the application), and also without having to copy any
sort of dispatcher or jump table into each process's code segment. Besides, the interrupt stack
frame allows for some state to be restored upon an interrupt return without more OS-side setup.

Software interrupts used as service dispatchers often will be utilised to return results in one or
more registers or status flags. They can also clobber registers. Unlike the typical use of hardware
interrupts not all registers need to be preserved by software interrupt handlers. This is because
the application knows when and that it uses anint instruction, and so can treat it like a function
call following a certain calling convention. Hardware interrupts can occur at most instruction
boundaries and are thus less alike ordinary function calls.

2.2 What does it mean to hook an interrupt?
Hooking an interrupt generally means to bend the address stored in an IVT entry so as to point to
a new interrupt handler. Once the address is updated, subsequent interrupt calls to the affected
interrupt will call the new handler.

DOS itself hooks several interrupts on start-up, including interrupt 21h. In this case, generally
DOS will not remember the address previously found in the IVT entry for that interrupt number.

However, there is a class of system extensions that falls into the category "Terminate and Stay
Resident" (TSR) programs. A TSR installs a resident part before terminating another part, called
the transient part. Thus it leaves resident a part of itself. Such programs may hook interrupts,
such as the DOS service interrupt 21h. More often than not, such resident software will retain
a segmented far pointer to the "next handler". This pointer is obtained from the corresponding
IVT entry before the entry is modified to hook the interrupt.

The next handler pointer can be used for three purposes. First, if the resident part is ever to be
uninstalled during a session then the program needs to have remembered the prior handler's
address to restore that address into the IVT entry. Second, upon whatever handling the resident
does when its interrupt handler is called, it may decide to "chain" the call to the prior handler. It
can do so using a direct or indirect jump branch. Third, the resident may call the prior handler by
emulating an interrupt call complete with a stack frame. This is obtained by running apushf
instruction followed by a direct or indirect call branch. If the control flow returns from the
prior interrupt handler then the resident may do additional handling afterwards. This allows the
resident to do both pre- and post-processing of an interrupt service call.

2.3 How about to unhook an interrupt?
As alluded to, a TSR program may be instructed to uninstall its resident portion. Non-resident
software can also hook interrupts and may want to unhook them when it terminates.

In the simplest case, to unhook an interrupt means to take the "next handler" address the program
has stashed away, and write it to the IVT entry of the interrupt in question.

However, consider this: Let A be the program that hooked interrupt 21h. If a different program,
let's call it B, hooked the same interrupt at a point in time where A's handler already had been
hooked into the interrupt, then we end up with a chain of interrupt handlers that goes like
IVT -> B -> A -> DOS . If A naively restores its next handler pointer (which contains
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the DOS's handler address) then the chain would change to be as follows,IVT -> DOS . As
desired, A's handler no longer is in the chain. But B's handler also is no longer in the chain,
without B's awareness or consent.

If B alsois instructed to uninstall and naively restores its next handler pointer into the IVT then
the IVT will point to A's handler next. But by this time, the memory used by the resident A may
already have been freed and possibly re-used. Clearly, this is concerning.

In some cases it can be appropriate or desired to uninstall one's interrupt hook in this way.
However, more commonly it is better for the program A when trying to uninstall to check
whether its resident still provides the top-most handler for the used interrupt number. That is,
whether the IVT entry still points to A's resident handler, rather than elsewhere.

This introduces a failure condition: If, like before, B hooks the same interrupt after A has hooked
it, and then A is told to uninstall its resident, its IVT entry check will indicate that its resident
does not provide the top-most handler. Pending further options this must cause A to fail in part
or in full. It should report this and leave resident at least a minimal interrupt handler, in the
same spot that held the entrypoint for its full interrupt handler, so as not to disturb the interrupt
handler chain. That is, the address stored by B as its next handler pointer must remain valid.

2.4 Can we work around the unhook problem?
The problem with two TSRs both hooking the same interrupt is that one of them remembers a
pointer to the other. It is not enough to modify the IVT.

However, what if we had a program (call it C) that indicates in some way where its "next
handler" pointer lives? If A is directed to uninstall its resident portion, and C's is the top-most
handler, then A can follow C's next handler pointer and determine that it points to A's handler.
If C promises to use that particular pointer, and no other, to refer to A, then A gains an option.
It can modify C's pointer and update it with the next handler pointer of A itself. So we go from
IVT -> C -> A -> DOS to the new chainIVT -> C -> DOS .

To automate the indication, the IBM Interrupt Sharing Protocol (IISP) was defined. It consists
of an 18-byte structure, of which 6 bytes are crucial. Those 6 are comprised first of a word (2-
byte) signature, the string "KB", at the address of the interrupt handler entrypoint plus six bytes.
And second, at the entrypoint address plus two bytes, a dword (4-byte) segmented far pointer.
This pointer is the sole reference to the next handler; if the resident C wants to unhook itself
(either from the IVT or another reference) or wants to call or chain to the next handler, it must
use the IISP header's field.

2.5 What is this "advanced" deinstallation about?
If you install the resident A first, and then the B mentioned earlier, A can no longer access the
reference to its interrupt handler. The same is true if you install A first, then C, and then B.
However, there is a way to install B after A and still access the reference to A.

For how to do that, first some words about the Alternate Multiplex Interrupt Specification
(AMIS). AMIS was defined by Ralf Brown to allow a common interface to TSRs with several
standard functions. Instead of overloading common software interrupts like interrupt 21h (DOS
services) or interrupt 2Fh (the traditional "multiplex" interrupt) with ever more special magic
functions, AMIS defines a new interface on the previously unused interrupt 2Dh.

Each AMIS program allocates a multiplex number out of 256 possible values upon installation,
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choosing a number that is not yet used. To facilitate this, there is a common detection function,
the AMIS function 0, called "Installation Check". The multiplex number to check is written to
theAHregister, and the AMIS function number to call is put intoAL. Then the software interrupt
2Dh is called. Function 0 returns withAL set to 0FFh if the multiplex number is in use, but leaves
AL at 0 instead if it isn't. (Function 0 also returns a signature and version number in three more
registers but these don't matter to us.)

Another AMIS function is function 4, called "Determine Chained Interrupts". It can be called
once it has been detected that a multiplex number is in use. Again the multiplex number is passed
in AHand the function number inAL. Additionally, the querent must provide an interrupt number
to check in theBL register. This function can return a pointer to an interrupt handler entrypoint,
or the address of an AMIS interrupt list, or other return values. It is assumed that AMIS TSRs'
interrupt handlers begin with an IISP header.

The AMIS interrupt list is made up of a number of 3-byte entries: The first byte specifies an
interrupt number, the second and third byte form a word that specifies an offset. The offset,
combined with the same segment as used to address the interrupt list itself, points to the
entrypoint of an interrupt handler that corresponds to the specified interrupt number. The last
entry of the list is the one with an interrupt number of 2Dh. (Note that it is not prohibited to
have multiple interrupt handlers for the same interrupt number, save interrupt 2Dh.)

Knowing that much, consider a case with a TSR program called D. It is an AMIS-compliant
TSR which allocates a multiplex number to be detected by AMIS function 0, and returns an
interrupt list upon being queried on AMIS function 4. Aside from interrupt 2Dh, it also hooks
interrupt 21h.

Now if you install the TSRs in the order A then D then B, you end up with an interrupt chain
for interrupt 21h that goes likeIVT -> B -> D -> A -> DOS . If you tell the A program
to uninstall itself, it will determine that the IVT points to B, and B's handler does not start with
an IISP header. The advanced deinstallation method kicks in now: The deinstaller for A can
detect all AMIS multiplex numbers that are in use, then ask each resident AMIS TSR about its
handler for interrupt 21h using function 4. If it finds such a handler it can search the interrupt
chain starting at this handler.

In our case, A will detect the resident D, ask for its interrupt 21h handler with function
4, and receive the interrupt list. The interrupt list contains an entry for D's interrupt 21h
handler entrypoint. Searching the chain starting from D's handler, which has an IISP header,
allows A to find the reference to A's handler. Then A can uninstall its own handler from
the chain by updating the reference in D's IISP header. The interrupt chain is updated from
IVT -> B -> D -> A -> DOS to now beIVT -> B -> D -> DOS . The reference
that B holds to D remains valid.
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Section 3: Details

Interrupts are specified either as hexadecimal numbers, separated by blanks, or using the
keywordALL.

Interrupt handlers are matched using the /S= or /M= switches. (If both are specified then the
first match from either switch wins.)

3.1 Bubbling
Bubbling means to switch handlers so that a selected handler is made the topmost handler. This
is possible in three cases:

The handler is reachable from the top (only IISP handlers are above it) and it is an IISP handler.

This is called the Normal case. The handler is unlinked and re-inserted at the top. That is,
the IVT is made to point to the handler, the reference to the handler is made to point to the
handler's next handler pointer, and the handler is made to point to the previously topmost
handler.

The handler is reachable from another, discoverable IISP handler and it is an IISP handler.

This is called the More Complex case. The operation is the same as for the first case.

The handler is reachable from the top and another new IISP handler is discoverable which comes
later in the interrupt chain.

This is called the Complex case. The handler and its chain up to the new handler is unlinked
and re-inserted at the top. The IVT is made to point to the handler, the reference to the
handler is made to point to the new handler's next handler pointer, and the new handler is
made to point to the previously topmost handler.

There is another scenario which is not currently implemented. This is if the handler is a non-
IISP handler, it is not reachable from the top, but it is reachable from another discoverable IISP
handler. The problem is that this needs another IISP handler that is reachable, and it must be
located in the chain behind the handler to bubble. It is not possible to determine which of all
discoverable IISP handlers is located behind the handler to bubble.

3.2 /S=NNNNswitch (Set match segment)
Match handlers with a code segment equal to a certain number. NNNN is a hexadecimal number.

Specifying this switch sets up matching so that the code segment of a handler is used to determine
which handler to operate on.

Additionally the NNNN can be specified as two hexadecimal numbers separated by a colon.
This sets up matching so that only an exact handler address is matched.
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3.3 /M=NAMEswitch (Set match MCB name)
Match handlers in an MCB matching a certain name. NAME is a string, which can be quoted
if to include whitespace. The NAME is matched case-insensitively.

Specifying this switch sets up matching so that the MCB name of a handler's memory block is
used to determine which handler to operate on.

3.4 /L=NNNN switch (Set length of chain to move)
NNNN is a decimal number, or the keywordMAX.

If this switch is specified and an IISP handler is to be moved, then multiple IISP handlers will
be moved, if found. Specifying zero is invalid. Specifying one is equal to the default behaviour
of moving a single IISP handler. Specifying a higher number will move as many IISP handlers
in a row. If there are not that many IISP handlers in a row starting with the matched entry, the
operation is aborted. Specifying the keywordMAXleads to moving as many IISP handlers as
there are found in a row starting with the matched entry.

If a non-IISP handler is to be moved this switch is ignored.
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Section 4: Requirements

• 86-DOS system compatible to MS-DOS version 2 or later (version 5 or later recommended)

• 8088/8086 processor or higher

• 10 KiB of memory for the transient SHUFHOOK program
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Section 5: Building

1. Check out tip revision of the hg repo to a directory

2. Check out lmacros into a sibling directory (that is, the .mac files should be located in the
path../lmacros/ as seen from the shufhook directory)

3. From the shufhook directory run./mak.sh (needs bash and nasm)

4. Alternatively, from the shufhook directory run
nasm -I ../lmacros/ transien.asm -o shufhook.com

5. From the shufhook/doc subdirectory run./mak.sh (needs bash and hg and halibut)
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Source Control Revision ID

hg cee5df43706d, from commit on at 2023-05-19 18:39:30 +0200

If this is in ecm's repository, you can find it at
https://hg.pushbx.org/ecm/shufhook/rev/cee5df43706d
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