
ACEGALS - Assembly Comments
Explained: Guide for Advanced
Learning and Style

2020 by E. C. Masloch. Usage of the works is permitted provided that this instrument is
retained with the works, so that any entity that uses the works is notified of this instrument.
DISCLAIMER: THE WORKS ARE WITHOUT WARRANTY.

This document has been compiled on 2025-07-21.

1

Contents

Section 1: Protocol comments . 4

1.1 Protocol comment sections . 4

1.1.1 Header (no section name given). 4

1.1.2 ‘INP: ’ Input parameters. 4

1.1.3 ‘OUT:’ Output parameters. 4

1.1.4 ‘CHG:’ Changed registers. 4

1.1.5 ‘STT: ’ State expected or established by the function. 5

1.1.6 ‘STK: ’ Stack usage. 5

1.1.7 ‘REM:’ or ‘ Note: ’ Further remarks or notes. 5

1.2 Register names and variables . 5

Section 2: Stack frame variables and parameters 6

Section 3: Pointers . 7

Section 4: Jump targets . 8

Section 5: Highlighted information . 9

Section 6: Flag states and flags . 10

Section 7: Indentation, comment positioning, and spacing 11

7.1 Vertical spacing . 12

7.2 Horizontal spacing . 12

Section 8: Capitalisation . 13

Section 9: Local labels . 14

Section 10: Control characters . 15

Section 11: Skipping instructions . 16

Section 12: Debugging defines . 17

Section 13: Conditional jumps . 18

Section 14: Examples . 19

2

14.1 Protocol comment of the lDOS boot iniload.asm read_sector 19

14.2 Protocol comment of the lDOS boot iniload.asm clust_next 19

14.3 Protocol comment of the lDOS memory.asm IsFirstUMCB? 19

14.4 Near lframe of lDOS init.asm
disp_dxax_times_cx_width_bx_size 20

14.5 Near lframe with parameters, of symsnip binsrch.asm
segment_to_selector . 20

14.6 Pointer arrows in lDOS boot iniload.asm init_memory 20

14.7 Flag states and jump arrows in lDOS boot iniload.asm
parse_partition_number . 21

14.8 Header comment with usage conditions in lDOS boot iniload.asm 21

14.9 Comment continued across lines in lDOS boot iniload.asm
finish_relocation . 22

14.10 Macrolreserve with additional indentation in lmacros2.mac 22

14.11 Indented related instructions in lDOS boot iniload.asm
clust_to_first_sector . 23

14.12 Indented function parameters in symsnip binsrch.asm
move_insert_farpointer . 23

14.13 Initial macros and a structure in lDOS boot iniload.asm 24

14.14 Indentation ofdw and macro call in lDOS boot iniload.asm
ldos_entry . 24

14.15 Structure istruc usage and indentation in lDOS init.asm init0_end 24

14.16 Line continuation with backslashes in lDOS boot iniload.asm MZ
EXE header . 25

14.17 Data continued across several lines in lDebug debug.asm cmdlist 25

14.18 Common local label names in lDebug run.asm
bb_handlefailedrestore . 25

14.19 Common local label name in lDOS boot iniload.asm disp_error 26

14.20 Control characters given in numeric form for lDOS init.asm
init1_msg . 26

14.21 Skipping instructions in lDOS boot iniload.asm init_memory 26

14.22 Skipping instructions using NC setting in lDebug boot.asm
yy_boot_read . 27

14.23 Using d5 prefix in lDOS boot iniload.asm parse_partition_number 27

Source Control Revision ID . 28

3

Section 1: Protocol comments

These comments list various aspects of a function's protocol. While the description can be
extensive, sometimes parts are omitted and left to implication. (Example 14.1, example 14.2,
example 14.3, example 14.4, example 14.5.)

1.1 Protocol comment sections
Protocol comments are composed of several sections, all of which are optional. If there is a
section name given, then the contents of that section are indented the same as the section name,
with a semicolon in the same column, and are then indented by an additional tab.

1.1.1 Header (no section name given).

English-language description of the function's purpose. (Example 14.1, example 14.3.) If a
named section follows the header, then there is usually a blank line of space between the header
and the first named section. This line contains only an indented semicolon.

1.1.2 ‘INP: ’ Input parameters.

These can be given as variables (labels in memory), flags or flag states, registers, and other
circumstances (described in English). Usually a concise explanation of the given input is written
down along with it. Equality expressions describe the content of the input here.

1.1.3 ‘OUT:’ Output parameters.

These can again be variables, flags, flag states, registers, or other circumstances. Sometimes the
latter will be descriptions of the resulting behaviour of the function. Equality expressions are to
be read as assignments to the left-hand operand.

1.1.4 ‘CHG:’ Changed registers.

This lists registers and sometimes variables that are possibly overwritten by the function. It is
not a given that they are indeed written, just that they may be. It is however a given, if a CHG
section is specified, that registers not listed in it and also not listed in an OUT section are not
modified by the function. Flags in the flags register are usually implied to be changed, and not
listed here specifically.

CHG and OUT registers may be termed call-clobbered. If a CHG section is given, then registers
that do not feature in the CHG nor OUT section may be considered call-preserved.

Sometimes a minus sign (-) is given to indicate no changes occur beyond those to registers listed
in the OUT section. Even if OUT only lists a register under certain conditions, it is assumed that
for all other conditions this register may be changed too. (Example 14.1, example 14.3, example
14.5.)

4

Occasionally, it may be specified in the CHG section that flags do not change, for example, by
specifying ‘CHG: - (not even flags) ’.

1.1.5 ‘STT: ’ State expected or established by the function.

This is often segment registers, and occasionally flags, but can also be general program logic
state. Sometimes there will be lines like ‘sets es to ss ’ which point out that the specified
action may occur. This should be seen as advisory, as these changes are not mandatory, they
merely can occur. If a state change is expected as part of an interface, it should be specified in
the OUT section.

STT UP (Direction Flag cleared) is often assumed without being noted. Care must be taken not
to leave DN when returning or calling a function.

1.1.6 ‘STK: ’ Stack usage.

This occurs seldom. It lists the stack usage, in words, of the function. It may list several quotes
for different circumstances. Hardware interrupts and CPU exceptions are not observed by these
counts, but function and software interrupt calls are. (Example 14.3.)

1.1.7 ‘REM:’ or ‘ Note: ’ Further remarks or notes.

(Sometimes with no section name given.) Explain further details of the function's behaviour.
This can range from listing side-effects to assumptions to implementation details. (Example
14.1.)

1.2 Register names and variables
All the register names can be given to indicate single registers. An ‘h’ after a usual 32-bit
register name indicates the high 16 bits of the 32-bit register, e.g.eaxh . Two or more register
names can be given consecutively, separated by colons. This means the registers are appended
to represent a larger variable. For example,cs:ip refers to a 32-bit (16-bit segment + 16-bit
offset) far pointer,dx:ax refers to a 32-bit variable, anddl:ax refers to a 24-bit variable.
(Example 14.1, example 14.2, example 14.4.)

To refer to memory variables usually the address is set in brackets, so as to indicate an effective
address. This can be prefixed by a variable size keyword, such asbyte , word , 3byte , dword ,
etc. These can be shortened toby or b, wo or w, dwo or d, etc. (Example 14.5.)

In theOUTsection, registers or variables may be given with anINP: prefix, such asINP:bx .
This refers to the value held at the function's entrypoint.

5

Section 2: Stack frame variables and parameters

Thelframe stack frame macros oflmacros2.mac allow specifying parameters (lpar) and
variables (lvar). Parameters may be discarded by the function or left on the stack as returned
to the caller. Variables may be reserved space for by macros or by pushing onto the stack. For
both, the first macro parameter specifies the size, which may be numeric, or one of the keywords
byte , word , ordword . The second macro parameter is the label, which is then prepended by a
question mark. For example, ‘lvar word, variable ’ defines a label called?variable
which is the offset from bp to access a word in the stack frame. It can, once reserving space for
it, be accessed like in ‘mov ax, word [bp + ?variable] ’. (Example 14.4, example
14.5.)

6

Section 3: Pointers

A pointer can be described by listing the registers or variables that make up a near, far, or segment
pointer, followed by an arrow, and then a description of what is being pointed to. For example,
‘si -> input string ’. The arrow is ‘-> ’ for near or far pointers, and ‘=>’ (or ‘ :0 -
>’) for segment pointers. If a certain register or register pair is set by an instruction, a comment
after that code line may specify an arrow without any pointer register given, which implies that
whichever register is set holds that pointer. An expression may be specified to hold the pointer,
such as ‘bp + di -> error info word ’. (Example 14.6.)

7

Section 4: Jump targets

A jump, usually a conditional one, may be followed by a comment indicating the jump
action with an arrow, ‘--> ’. Before or after the arrow, either the jump condition or the target
circumstances may be described. (Example 14.7.)

8

Section 5: Highlighted information

A question or condition may be followed by a trailing sequence composed of a blank and then a
question mark (?). This is to highlight that there is consideration of a question there. Similarly,
a prefix or suffix of an exclamation point (!) that is separated from text with a blank may be
used. This highlights certain circumstances of importance. (Example 14.1, example 14.18.)

9

Section 6: Flag states and flags

The flag states may be indicated with the abbreviations used by the debugger to indicate the
flags. These are:

Carry Flag

CY = Carry set, NC = No Carry

Zero Flag

ZR = Zero, NZ = No Zero

Sign Flag

PL = Plus, NG = Negative

Direction Flag

DN = Down (DF set), UP = Up (DF clear)

Interrupt Flag

EI = Enable Interrupts, DI = Disable Interrupts

Note thattest , and , or , andxor leave NC, which is often depended upon. This includes the
uses of__TEST_IMM8, __TEST_IMM16, and__TEST_OFS16_IMM8to skip the following
instructions. It is courteous in such cases, and some others, to indicate a certain flag state in a
comment after the instruction that establishes the state, or after a jump that should occur with
a certain state.

When usingadc or sbb or rcr or rcl in the obvious ways, no comment is given that the
Carry Flag is used. The same is true of the flags used by conditional instructions, which are
jcc , setcc (386+), andcmovcc (usual for 686). The instructionsstc , clc , cmc, std , cld ,
sti , andcli are also not commented solely to indicate their flag change.

Note thatmov, xchg , push , pop , lea , jmp , call , retn , andretf do not modify any
flags. Further,inc anddec modify some flags, notably the Zero Flag and Sign Flag, but do
not modify the Carry Flag.

Theiret instruction does modify flags, by doing the equivalent ofpopf . To establish the flags
set byiret , the word on the stack has to be accessed via a stack frame. Instead, a ‘retf 2 ’
instruction can be used to return from an interrupt handler, but note that this does not restore
the Trap Flag nor the Interrupt Flag nor the Direction Flag, which may be undesirable.

(Example 14.2, example 14.3, example 14.7.)

10

Section 7: Indentation, comment positioning,
and spacing

Our assembly source is formatted with 8 blanks per tab. There are two tabs in front of protocol
comments, and one or two tabs in front of instructions. Labels generally start in the first column,
and are given their own line, except for messages and other data. Comments can occur in single
lines or multi-line paragraphs between code lines, usually indented by two tabs. Comments
between code lines may start in the first column instead of being indented. Long comments,
including the file purpose and usage conditions header comment, may be set in ‘%if 0 ’ blocks
without any indentation. Otherwise, a comment is always indicated by a semicolon followed
by a blank, unless a linebreak immediately follows the semicolon. Comments can also occur
after code lines. These are indented to a certain tab stop position, which can vary from function
to function. In the case that such a comment is split across several lines or the code line is too
long, after-code comments can follow on the next line after the code line, which doesn't have
any code on its own. Rarely, a single comment may be continued across the margins of two or
more code lines.

Comments continued across subsequent lines may indent the text in these lines with an additional
blank to indicate continuation. (Example 14.9, example 14.12.) That is, there may be a semicolon
followed by two blanks, or a semicolon followed by a tab followed by a blank. There is also
a common usage of such additional indentation in protocol comment sections other than the
header and Note sections; in these cases the indentation indicates parts that are applicable
when some circumstance is met, which is given on the prior less-indented line. (Example 14.1,
example 14.2.)

Preprocessor directives may be indented with single blanks to indicate the nesting level of
directives within conditionals.%macro and%endmacro may be indented by one tab or not at
all. Preprocessor directives not otherwise mentioned start in the first column, except for when
nesting is indicated by using one or more blanks as indentation. (Example 14.10, example
14.16.)

Sometimes, labels or instructions may also be indented by an additional blank, which for
instructions is placed after the default indentation tab. This usually indicates that the instruction
is on another ‘level’ in a certain sense. For example, the instruction ‘push bx ’ might be
indented by one tab plus one blank, amidst code otherwise indented by one tab, to indicate that
it is pushing into an lvar variable, or a parameter to a function call. (Example 14.4, example
14.18.) Another common example is when a lot of stack access happens in a code fragment, and
it could be unclear whichpush corresponds to whichpop . The additional indentation blank
indicates a relation between the marked instructions. (Example 14.11.)

Thestruc , endstruc , cpu , org , section , incbin , times , db , dw, dd , andalign
directives are indented by one tab.istruc andiend are indented by one tab. Theat macro
call starts in the first column, its data is indented to some tab stop. Labels in a struc are on the
same line as their reserve space instructions. (Example 14.13, example 14.15.)

11

Long lines may be split into several lines with the line continuation character, which is the
backslash (\). The parts on the subsequent lines are indented to match the operand which is
continued. (Example 14.16.) Longer messages or other data are split up into several directives.
(Example 14.17.)

7.1 Vertical spacing
Vertical space is broken up using blank lines. Between distinct pieces of program logic, one
blank line may be inserted. After an unconditional jump or a return instruction, there is generally
a blank line. Longer, more distinct code fragments, including functions, may be separated by
two blank lines. This is generally the longest chain of blank lines that occurs. Before the header
comment's ‘%if 0 ’ there is a blank line. Comments in ‘%if 0 ’ blocks have a blank line each
after the ‘%if 0 ’, before the ‘%endif ’, and after it. (Example 14.8.) The header (if any)
of a protocol comment is separated from other sections (if any) by one line that has the two
indentation tabs and a semicolon, but is otherwise blank. Such a blank-comment line is also used
between the last named section and the notes sections, if any. (Example 14.1, example 14.3.)
There is no blank line between the end of a protocol comment and the label of the described
function. Labels may generally be preceded or followed by blank lines, to indicate program
logic association. A file may end in one blank line, or none.

7.2 Horizontal spacing
A comma is followed by a single blank in an instruction. Commas in data definitions may or
may not be followed by a blank. Binary operators and operands in expressions, including in
effective addresses within brackets, are generally separated by single blanks. The colon (:) used
to indicate a register pair or segmented address is not preceded or followed by a blank. Unary
operators are preceded by a blank, but usually not followed by one. Parentheses and brackets
are surrounded by single blanks on the outsides, but there are no blanks on their insides. The
exception is that expressions with multiple pairs of parentheses may have additional blanks
inserted to clarify the intended precedence. However, between a single-line macro's name and
its parameter's opening parenthesis there is no blank.

12

Section 8: Capitalisation

Instructions, directives, and macro names and calls are always all uncapitalised. Labels are
usually not capitalised. Labels in structures start uncapitalised with subsequent words in the label
capitalised. Defines and section names are usually set in all-caps, as may be equates. Structure
names are also in all-caps. Uncapitalised suffixes like_size may be appended to a structure
name. Hexadecimal numeric values are written in capital digits, with a noncapital ‘h’ suffix.
Register names are uncapitalised.@@label references (@F, @B, etc) and flag states (CY, NC, ZR,
NZ, etc) are capitalised. After-code comments are generally not proper sentences and thus the
first word is not capitalised as when starting a sentence. Comments between code lines and in
protocol comments may be proper sentences and are then usually capitalised.

13

Section 9: Local labels

There are some common local labels. These are.ret , .retn , .retf , .return , .loop ,
.next , .end , .done , .skip , .error , .fail , .success , and. (only dot). A common
nonlocal label used in conjunction with local labels ismsg. (Example 14.18, example 14.19.)

14

Section 10: Control characters

In messages, CR and LF are represented as the numbers 13 and 10. Similarly, tab is represented
as the number 9, and backspace as 8. A dollar sign ($) may be given as the number 36. A zero
terminator is of course given as the number 0. Blanks as immediate operands are usually given
as the number 32. (Example 14.20, example 14.23.)

15

Section 11: Skipping instructions

The constants__TEST_IMM8, __TEST_IMM16, and__TEST_OFS16_IMM8are defined
to the respective byte strings for these instructions. These equate names refer to 16-bit code,
in one of Real or Virtual 86 Mode or a 16-bit code segment in Protected Mode. They can be
used to skip subsequent instructions that fit into the following 1, 2, or 3 bytes. However, note
that they modify the flags register, including always setting NC. The 16-bit offset plus 16-bit
immediate test instruction is not included for these purposes because it might access a word
at offset 0FFFFh in a segment. Also, the__TEST_OFS16_IMM8as provided should only be
used in 86M, to avoid accessing data beyond a segment limit. After the db instruction using one
of these constants, a parenthetical remark should list which instructions are skipped. (Example
14.21, example 14.22.)

16

Section 12: Debugging defines

lmacros1.mac creates the defines_DEBUG0through_DEBUG4for debugging purposes.
Their purpose may differ between projects. However,_DEBUG4almost always emits verbose
messages to the terminal, with the occasional keypress prompt. The macro collection also
defines the prefix macrosd0 to d4 , which can be used to mark single lines as belonging to the
debugging build, instead of wrapping that line into preprocessor conditionals. (Example 14.23.)

17

Section 13: Conditional jumps

Thejz andjnz instructions are used when the Zero Flag state (Zero / Not Zero) is to be tested.
For equality comparisons, theje andjne aliases are to be used instead. Likewise,ja , jae ,
jb , andjbe are used for comparisons, andjc andjnc for Carry Flag state (Carry / Not Carry).
(Example 14.7, example 14.18, example 14.19, example 14.21.)

18

Section 14: Examples

14.1 Protocol comment of the lDOS boot iniload.asm read_sector
https://hg.pushbx.org/ecm/ldosboot/file/5815f5ba238b/iniload.asm#l444

 ; Read a sector using Int13.02 or Int13.42
 ;
 ; INP: dx:ax = sector number within partition
 ; bx:0-> buffer
 ; (_LBA) ds = ss
 ; OUT: If unable to read,
 ; ! jumps to error instead of returning
 ; If sector has been read,
 ; dx:ax = next sector number (has been incremented)
 ; bx:0-> next buffer (bx = es+word[para_per_sector])
 ; es = input bx
 ; CHG: -
 ; STT: ds = ss
 ;
 ; Note: If error 09h (data boundary error) is returned,
 ; the read is done into the ldSectorSeg buffer,
 ; then copied into the user buffer.
read_sector:

14.2 Protocol comment of the lDOS boot iniload.asm clust_next
https://hg.pushbx.org/ecm/ldosboot/file/5815f5ba238b/iniload.asm#l991

 ; INP: cx:bx = cluster (0-based)
 ; si:di = loaded FAT sector, -1 if none
 ; OUT: CY if no next cluster
 ; NC if next cluster found,
 ; dx:ax = next cluster value (0-based)
 ; si:di = loaded FAT sector
 ; CHG: cx, bx
clust_next:

14.3 Protocol comment of the lDOS memory.asm IsFirstUMCB?
https://hg.pushbx.org/ecm/ldos/file/ede05223b42e/memory.asm#l176

 ; Compare ax to first UMCB
 ;

19

https://hg.pushbx.org/ecm/ldosboot/file/5815f5ba238b/iniload.asm#l444
https://hg.pushbx.org/ecm/ldosboot/file/5815f5ba238b/iniload.asm#l991
https://hg.pushbx.org/ecm/ldos/file/ede05223b42e/memory.asm#l176

 ; INP: ax = MCB
 ; OUT: NZ if not first UMCB (or if there's no UMCB)
 ; ZR if first UMCB
 ; CHG: -
 ; STK: 1 word
IsFirstUMCB?:

14.4 Near lframe of lDOS init.asm
disp_dxax_times_cx_width_bx_size

https://hg.pushbx.org/ecm/ldos/file/ede05223b42e/init.asm#l2089

 ; INP: dx:ax = numerator
 ; cx = multiplier
 ; bx = field width
 ; STT: UP
 ; OUT: displayed
 init1_insure_low_byte_not_0CCh
disp_dxax_times_cx_width_bx_size:
 lframe near
 lvar 4 + 4 + 2, buffer
 lvar 6, dividend
 lenter
 lvar word, width
 push bx
 push si
 push di

14.5 Near lframe with parameters, of symsnip binsrch.asm
segment_to_selector

https://hg.pushbx.org/ecm/symsnip/file/9c232415d568/binsrch.asm#l1789

 ; INP: word [ss:sp + 2] = segment value to access
 ; word [ss:sp] = selector to use if in PM
 ; OUT: one word popped from stack
 ; word [ss:sp] = selector value to use for access
 ; CHG: -
segment_to_selector:
 lframe near
 lpar word, in_segment_out_selector
 lpar_return
 lpar word, selector_to_use
 lenter

14.6 Pointer arrows in lDOS boot iniload.asm init_memory

https://hg.pushbx.org/ecm/ldosboot/file/5815f5ba238b/iniload.asm#l1327

 ; ax => sector buffer

20

https://hg.pushbx.org/ecm/ldos/file/ede05223b42e/init.asm#l2089
https://hg.pushbx.org/ecm/symsnip/file/9c232415d568/binsrch.asm#l1789
https://hg.pushbx.org/ecm/ldosboot/file/5815f5ba238b/iniload.asm#l1327

 ; bx => FAT buffer
 ; cx => above end of memory available for load
 ; dx => above end of memory used by us
 mov word [bp + ldMemoryTop], dx
 mov word [bp + ldLoadTop], cx
 mov word [bp + ldSectorSeg], ax

 mov ds, word [bp + lsvFATSeg]
 xor si, si ; ds:si -> FAT buffer
 mov es, bx
 xor di, di ; es:di -> where to move
 mov cx, 8192 >> 1
 rep movsw
 mov word [bp + lsvFATSeg], bx

14.7 Flag states and jump arrows in lDOS boot iniload.asm
parse_partition_number

https://hg.pushbx.org/ecm/ldosboot/file/5815f5ba238b/iniload.asm#l2077

.int13_retry:
 pushf
 push ax
 int 13h ; first try
 jnc @F ; NC, success on first attempt -->

; reset drive
 xor ax, ax
 int 13h
 jc @F ; CY, reset failed, error in ah -->

14.8 Header comment with usage conditions in lDOS boot
iniload.asm

https://hg.pushbx.org/ecm/ldosboot/file/5815f5ba238b/iniload.asm#l1

%if 0

Loader for finishing file system booting
 by C. Masloch, 2017

Usage of the works is permitted provided that this
instrument is retained with the works, so that any entity
that uses the works is notified of this instrument.

DISCLAIMER: THE WORKS ARE WITHOUT WARRANTY.

%endif

21

https://hg.pushbx.org/ecm/ldosboot/file/5815f5ba238b/iniload.asm#l2077
https://hg.pushbx.org/ecm/ldosboot/file/5815f5ba238b/iniload.asm#l1

14.9 Comment continued across lines in lDOS boot iniload.asm
finish_relocation

https://hg.pushbx.org/ecm/ldosboot/file/5815f5ba238b/iniload.asm#l824

 sub ax, cx ; how much to relocate later
 shl cx, 1
 shl cx, 1
 shl cx, 1 ; how much to relocate first,
 ; << 3 == convert paragraphs to words
 retf ; jump to relocator

14.10 Macro lreserve with additional indentation in
lmacros2.mac

https://hg.pushbx.org/ecm/lmacros/file/6c19c9ef5997/lmacros2.mac#l556

 ; Reserve stack space for prior lvar variables.
 ;
 ; This is used after lenter and reserves the stack space
 ; for all yet defined variables, including those defined
 ; after the lenter usage (which aren't reserved space for
 ; by lenter itself).
 ;
 ; "lenter early \ lvar a \ lenter \ lvar b" is equivalent
 ; to "lenter \ lvar a \ lreserve \ lvar b".
 ;
 ; lreserve can be used multiple times. It always uses
 ; "lea sp, [bp - x]" to reserve space, so the space will
 ; always be equal to the already defined variables.
 ;
 ; Warning: Using lreserve after having pushed additional
 ; data, beyond the defined variables, will discard that
 ; data from the stack as sp is reset.
%imacro lreserve 0.nolist
%ifnctx LENTER
 %fatal Must use lenter first
%endif
%ifn %$enter
 %fatal lenter did not set up stack frame
%endif
%assign %$lsizevariables (-%$ofs+1)&~1
%ifnidn %$bits,__BITS__
 %fatal BITS of lframe (%$bits) differs from current: __BITS__
%endif
%if %$emit
%if %$bits == 16
 %if %$ofs

22

https://hg.pushbx.org/ecm/ldosboot/file/5815f5ba238b/iniload.asm#l824
https://hg.pushbx.org/ecm/lmacros/file/6c19c9ef5997/lmacros2.mac#l556

 lea sp, [bp - %$lsizevariables]
 %endif
%elif %$bits == 32
 %if %$ofs
 lea esp, [ebp - %$lsizevariables]
 %endif
%elif %$bits == 64
 %if %$ofs
 lea rsp, [rbp - %$lsizevariables]
 %endif
%else
 %fatal Unknown BITS specified: %$bits
%endif
%endif
%endmacro

14.11 Indented related instructions in lDOS boot iniload.asm
clust_to_first_sector

https://hg.pushbx.org/ecm/ldosboot/file/5815f5ba238b/iniload.asm#l965

clust_to_first_sector:
 push dx
 push ax
 push dx
 mul word [bp + ldClusterSize]
 xchg bx, ax
 xchg cx, dx
 pop ax
 mul word [bp + ldClusterSize]

14.12 Indented function parameters in symsnip binsrch.asm
move_insert_farpointer

https://hg.pushbx.org/ecm/symsnip/file/9c232415d568/binsrch.asm#l1088

 xchg ax, cx
 xchg bx, dx
 push word [bp + ?start_pointer + 2]
 push word [bp + ?start_pointer]
 call normalise_pointer_with_displacement_bxcx
 pop di
%if _PM
 push word [symsel1]
 call segment_to_selector
%endif
 pop es ; es:di -> ?start_pointer + where to start
 ; (source entry)

23

https://hg.pushbx.org/ecm/ldosboot/file/5815f5ba238b/iniload.asm#l965
https://hg.pushbx.org/ecm/symsnip/file/9c232415d568/binsrch.asm#l1088

14.13 Initial macros and a structure in lDOS boot iniload.asm
https://hg.pushbx.org/ecm/ldosboot/file/5815f5ba238b/iniload.asm#l16

%assign __lMACROS1_MAC__DEBUG_DEFAULTS 1
%include "lmacros3.mac"
 numdef DEBUG5
%idefine d5 _d 5,

 struc BS
bsJump: resb 3
bsOEM: resb 8
bsBPB:
 endstruc

14.14 Indentation of dw and macro call in lDOS boot iniload.asm
ldos_entry
https://hg.pushbx.org/ecm/ldosboot/file/5815f5ba238b/iniload.asm#l1121

%assign num 1020-($-$$)
%warning num bytes in front of ldos_entry
 _fill 1020,38,start
 dw "lD" ; always this signature (word [1020] == 446Ch)
 dw _INILOAD_SIGNATURE
 ; two printable non-blank ASCII characters
 ; (ie both bytes in the range 21h..7Eh)
 ; Rx = RxDOS kernel
 ; FD = FreeDOS kernel
 ; TP = TestPL
 ; (lD)eb = lDebug
 ; (lD)Db = lDDebug
%if ($ - $$) != 1024
 %error Invalid signature
%endif
ldos_entry:

14.15 Structure istruc usage and indentation in lDOS init.asm
init0_end
https://hg.pushbx.org/ecm/ldos/file/ede05223b42e/init.asm#l292

 align 16
init0_end:
 istruc MCB
at mcbSignature, db "M"
at mcbOwner, dw 8
at mcbSize, dw (dosentry_end - dosentry_start) >> 4
at smcbName, dw "S"
at smcbType, db S_DOSENTRY
 iend

24

https://hg.pushbx.org/ecm/ldosboot/file/5815f5ba238b/iniload.asm#l16
https://hg.pushbx.org/ecm/ldosboot/file/5815f5ba238b/iniload.asm#l1121
https://hg.pushbx.org/ecm/ldos/file/ede05223b42e/init.asm#l292

14.16 Line continuation with backslashes in lDOS boot iniload.asm
MZ EXE header
https://hg.pushbx.org/ecm/ldosboot/file/5815f5ba238b/iniload.asm#l177

%ifndef _IMAGE_EXE_MIN_CALC
 %define _IMAGE_EXE_MIN_CALC \
 (((_IMAGE_EXE_MIN \
 - (payload.actual_end - payload) \
 - 256 \
 + _IMAGE_EXE_AUTO_STACK) + 15) & ~15)
%endif

14.17 Data continued across several lines in lDebug debug.asm
cmdlist
https://hg.pushbx.org/ecm/ldebug/file/89fa92b47966/source/debug.asm#l173

 align 2
cmdlist: dw aa,bb,cc,ddd,ee,ff,gg,hh,ii,error,error,ll,mm,nn,oo
 dw pp,qq,rr,sss,tt,uu,error,ww,xx,yy

14.18 Common local label names in lDebug run.asm
bb_handlefailedrestore
https://hg.pushbx.org/ecm/ldebug/file/89fa92b47966/source/run.asm#l1894

bb_handlefailedrestore:
 xor di, di
 xor cx, cx
 push ss
 pop es
 mov si, b_bplist.bp
.loop:
 mov ax, word [bp + di]
 test ah, 7Fh ; failed ?
 jz .next
 push cx
 push di
 ; cx = 0-based index
 push word [si + 2]
 push word [si] ; stack: linear address
 mov bl, byte [si + BPSIZE - 1]
 ; bl = what we tried to restore
 mov bh, 40h ; bh = 40h (bb)
 or ah, 80h ; ah & 80h = set (is restore)
 call display_breakpoint_failure
 pop di
 pop cx
.next:
 add si, BPSIZE

25

https://hg.pushbx.org/ecm/ldosboot/file/5815f5ba238b/iniload.asm#l177
https://hg.pushbx.org/ecm/ldebug/file/89fa92b47966/source/debug.asm#l173
https://hg.pushbx.org/ecm/ldebug/file/89fa92b47966/source/run.asm#l1894

 scasw ; di += 2
 inc cx
 cmp cx, _NUM_B_BP
 jb .loop
.end:
 retn

14.19 Common local label name in lDOS boot iniload.asm
disp_error
https://hg.pushbx.org/ecm/ldosboot/file/5815f5ba238b/iniload.asm#l375

disp_error:
.:
 lodsb
 test al, al
 jz .ret
 mov ah, 0Eh
 mov bx, 7
 ; push bp
 ; (call may change bp, but it is not used here any longer.)
 int 10h
 ; pop bp
 jmp short .

14.20 Control characters given in numeric form for lDOS init.asm
init1_msg
https://hg.pushbx.org/ecm/ldos/file/ede05223b42e/init.asm#l702

init1_msg:
.alloc_error: asciz "init: Error "
.alloc_error_q: asciz "h while allocating memory: "
.linebreak: asciz 13,10

14.21 Skipping instructions in lDOS boot iniload.asm init_memory
https://hg.pushbx.org/ecm/ldosboot/file/5815f5ba238b/iniload.asm#l1262

 mov dx, ss
 mov ax, bp
 add ax, 512 + 15
 jnc @F
 mov ax, 1_0000h >> 1
 db __TEST_IMM16 ; (skip one shr)
@@:
 shr ax, 1
 shr ax, 1
 shr ax, 1
 shr ax, 1
 add dx, ax

26

https://hg.pushbx.org/ecm/ldosboot/file/5815f5ba238b/iniload.asm#l375
https://hg.pushbx.org/ecm/ldos/file/ede05223b42e/init.asm#l702
https://hg.pushbx.org/ecm/ldosboot/file/5815f5ba238b/iniload.asm#l1262

14.22 Skipping instructions using NC setting in lDebug boot.asm
yy_boot_read
https://hg.pushbx.org/ecm/ldebug/file/89fa92b47966/source/boot.asm#l4319

.success:
 db __TEST_IMM8 ; (skip stc, NC)
.error:
 stc

14.23 Using d5 prefix in lDOS boot iniload.asm
parse_partition_number
https://hg.pushbx.org/ecm/ldosboot/file/5815f5ba238b/iniload.asm#l1779

d5 call d5dumpregs
d5 call d5message
d5 asciz 13,10,"In query_geometry 0",13,10

27

https://hg.pushbx.org/ecm/ldebug/file/89fa92b47966/source/boot.asm#l4319
https://hg.pushbx.org/ecm/ldosboot/file/5815f5ba238b/iniload.asm#l1779

Source Control Revision ID

hg 66365b7358b8, from commit on at 2025-07-21 23:26:21 +0200

If this is in ecm's repository, you can find it at
https://hg.pushbx.org/ecm/acegals/rev/66365b7358b8

28

https://hg.pushbx.org/ecm/acegals/rev/66365b7358b8

	ACEGALS - Assembly Comments Explained: Guide for Advanced Learning and Style
	Contents
	Section 1: Protocol comments
	1.1 Protocol comment sections
	1.1.1 Header (no section name given).
	1.1.2 'INP:' Input parameters.
	1.1.3 'OUT:' Output parameters.
	1.1.4 'CHG:' Changed registers.
	1.1.5 'STT:' State expected or established by the function.
	1.1.6 'STK:' Stack usage.
	1.1.7 'REM:' or 'Note:' Further remarks or notes.

	1.2 Register names and variables

	Section 2: Stack frame variables and parameters
	Section 3: Pointers
	Section 4: Jump targets
	Section 5: Highlighted information
	Section 6: Flag states and flags
	Section 7: Indentation, comment positioning, and spacing
	7.1 Vertical spacing
	7.2 Horizontal spacing

	Section 8: Capitalisation
	Section 9: Local labels
	Section 10: Control characters
	Section 11: Skipping instructions
	Section 12: Debugging defines
	Section 13: Conditional jumps
	Section 14: Examples
	14.1 Protocol comment of the lDOS boot iniload.asm read_sector
	14.2 Protocol comment of the lDOS boot iniload.asm clust_next
	14.3 Protocol comment of the lDOS memory.asm IsFirstUMCB?
	14.4 Near lframe of lDOS init.asm disp_dxax_times_cx_width_bx_size
	14.5 Near lframe with parameters, of symsnip binsrch.asm segment_to_selector
	14.6 Pointer arrows in lDOS boot iniload.asm init_memory
	14.7 Flag states and jump arrows in lDOS boot iniload.asm parse_partition_number
	14.8 Header comment with usage conditions in lDOS boot iniload.asm
	14.9 Comment continued across lines in lDOS boot iniload.asm finish_relocation
	14.10 Macro lreserve with additional indentation in lmacros2.mac
	14.11 Indented related instructions in lDOS boot iniload.asm clust_to_first_sector
	14.12 Indented function parameters in symsnip binsrch.asm move_insert_farpointer
	14.13 Initial macros and a structure in lDOS boot iniload.asm
	14.14 Indentation of dw and macro call in lDOS boot iniload.asm ldos_entry
	14.15 Structure istruc usage and indentation in lDOS init.asm init0_end
	14.16 Line continuation with backslashes in lDOS boot iniload.asm MZ EXE header
	14.17 Data continued across several lines in lDebug debug.asm cmdlist
	14.18 Common local label names in lDebug run.asm bb_handlefailedrestore
	14.19 Common local label name in lDOS boot iniload.asm disp_error
	14.20 Control characters given in numeric form for lDOS init.asm init1_msg
	14.21 Skipping instructions in lDOS boot iniload.asm init_memory
	14.22 Skipping instructions using NC setting in lDebug boot.asm yy_boot_read
	14.23 Using d5 prefix in lDOS boot iniload.asm parse_partition_number

	Source Control Revision ID

